
Client Framework Data Integration Guide



Contents

IBM Tealeaf CX Client Framework Data Integration Guide...................................... 1
Work with client framework data in Tealeaf............................................................................................... 1

Client framework versions and licenses................................................................................................ 2
Data privacy in Tealeaf client frameworks.................................................................................................. 4

General security features....................................................................................................................... 5
Privacy configuration for UI Capture......................................................................................................8
Privacy configuration for Android Logging Framework......................................................................... 9
Privacy configuration for iOS Logging Framework...............................................................................11
Data privacy in UI Capture................................................................................................................... 13

Tealeaf configuration for client frameworks.............................................................................................17
Integrate client framework data into Tealeaf........................................................................................... 19

Prerequisites........................................................................................................................................ 19
Required licenses................................................................................................................................. 19
Use groups and labels to store events and event-related objects..................................................... 20
Locating client framework sessions.................................................................................................... 20
User Agent Detection........................................................................................................................... 27
Searching for client framework sessions.............................................................................................28
Use groups and labels to store events and event-related objects..................................................... 33
Collect environmental data with step-based events.......................................................................... 33

Step-based eventing..................................................................................................................................39
Step-based eventing ........................................................................................................................... 39
Step-based objects.............................................................................................................................. 42
Browser based replay and step-based events.................................................................................... 44
Event manager processing of step-based event objects ................................................................... 46
Indexing and step-based events......................................................................................................... 53
Reference information about BBR and Events.................................................................................... 53

Eventing for cxOverstat............................................................................................................................. 54
cxOverstat usability data......................................................................................................................54
cxOverstat step attributes................................................................................................................... 57
cxOverstat events.................................................................................................................................57
cxOverstat dimensions.........................................................................................................................59
cxOverstat report groups..................................................................................................................... 60
cxOverstat report group templates..................................................................................................... 60
Tracking other usability events............................................................................................................61

Default Tealeaf client framework event objects.......................................................................................61
Tealeaf JSON object schema reference....................................................................................................64

Design features.....................................................................................................................................64
Unified header format.......................................................................................................................... 65
Session identifiers................................................................................................................................ 66
Count steps...........................................................................................................................................66
Performance measurement................................................................................................................. 67
Previous state and current state tracking........................................................................................... 69
Exceptions............................................................................................................................................ 70
Form field monitoring...........................................................................................................................70
ScreenView features............................................................................................................................ 71
JSON data message format................................................................................................................. 73
JSON message type schemas and examples......................................................................................78
Differences between frameworks..................................................................................................... 106
Tealeaf JSON properties....................................................................................................................107
Tealeaf JSON schema - tlType.......................................................................................................... 170
Tealeaf JSON schema - tlEvent......................................................................................................... 183

ii  



Tealeaf JSON Schema - Values for Controls..................................................................................... 192
IBM Tealeaf documentation and help.....................................................................................................197

Index................................................................................................................ 199

  iii



iv  



IBM Tealeaf CX Client Framework Data Integration Guide

This guide provides information on the Tealeaf CX features that you use when you integrate your android,
iOS, and webview applications in Tealeaf. The guide provides tasks and information on the events and hit
attributes that you configure to log mobile session data.

Work with client framework data in Tealeaf
After you integrate one of the Tealeaf® client frameworks with your web application or mobile native
application, you configure Tealeaf to properly capture and process the data. You configure data privacy,
capture, events. The Canister, and TLI server.

The configuration process to work with client framework data in Tealeaf includes:

1. Configure data privacy for client frameworks
2. Install and implement the Tealeaf framework for capture
3. Configure Canister and TLI Server, if necessary
4. Configure Tealeaf Events

Configure data privacy for client frameworks

Configure data privacy rules to mask any data captured from the client frameworks, such as passwords,
that must not be submitted to Tealeaf for capture.

As part of any implementation through Tealeaf Professional Services, data privacy is configured and
applied for any data that is submitted from a monitored client application. Before you enable capture of
client framework data, verify that privacy configuration was properly enabled and configured.

Install and implement the Tealeaf framework for capture

After you integrated the framework with your application, you must configure the framework to capture
the data and configure Tealeaf and process the data.

Use the information in this guide... To install and implement data capture for...

IBM® Tealeaf CX Mobile Android Logging
Framework Guide

native Android applications and for hybrid native
Android and WebView applications.

IBM Tealeaf CX Mobile iOS Logging Framework
Guide

native iOS application and for hybrid native iOS and
WebView applications.

IBM Tealeaf CX UI Capture j2 Guide JavaScript WebView applications.

Other Tealeaf configuration

You might need to configure the Canister and TLI Server for your deployment:

Tealeaf area Description Applicability

Canister Safety Limits To prevent runaway growth of
active sessions in the Canister,
Tealeaf imposes maximum limits
on duration, data size, and
number of hits for a session. If
any of these limits is exceeded,
the session is automatically

The Canister Safety limits apply
to client framework sessions,
including sessions from mobile
native applications.

• For mobile native application
sessions, data is submitted in

IBM Tealeaf CX Client Framework Data Integration Guide  1



Tealeaf area Description Applicability

closed in the Canister, even if the
visitor is still using the
application. Subsequent hits are
recorded to a new session.

compressed format to the PCA,
which writes values for the
request and response data size
before it was uncompressed. In
some cases, the uncompressed
text data can be 8x larger.

– If you enabled screen
capture through your client
framework, this data is
submitted in a compressed
file format (png) and does
not expand inside Tealeaf.

• Depending on the volume of
traffic, you might want to revisit
the Canister Safety Limits.

TLI Server A TLI server can be optionally
deployed to store static content,
such as images, style sheets, and
JavaScript, onto a separate
server. The TLI server can also
manage versioning of this static
content so that the original
version of static content is
available for replay and auditing
purposes indefinitely.

• When a TLI server is deployed,
the TLI session agent scans
hits based on MIME type. The
agent stores content onto the
server that is based on a
configured set of types.

For mobile native application
sessions captured through a
Logging Framework, TLI does not
apply, since any captured screen
captures are embedded in the
session data. The captures are
not referenced by URL to an
origin server. Therefore, TLI
cannot be used to store versions
of this content.
TLI servers might be used with
mobile web deployments.

Configure Tealeaf Events

There are three things to keep in mind about events:

• Tealeaf provides a set of events and event-related objects for use in capturing and processing data from
client frameworks.

• Data that is submitted from a Tealeaf client framework is in the form of JSON-based messages. These
messages are processed and stored as individual steps in the session data. The step-based events and
hit attributes that you create from these messages perform like other Tealeaf objects, but they are
configured in a different manner.

• You might find it useful to work through a complete scenario in which you create step-based events and
hit attributes from client framework data and then integrate those event objects into your data from
your browser-based web application.

Client framework versions and licenses

Minimum required versions

This documentation applies to the these versions of Tealeaf software licenses:

2  Client Framework Data Integration Guide



License Minimum version

IBM Tealeaf cxImpact Release 8.5 or later

PCA PCA Build 3330

Earlier versions

If your system does not meet the minimum requirements, JSON-based processing within Tealeaf and
step-based eventing are not supported.

Refer to this documentation for the earlier versions of the Tealeaf client frameworks.

• IBM Tealeaf CX UI Capture for AJAX Guide
• Android Logging Framework Reference Guide
• iOS Logging Framework Reference Guide

Required licenses

To use any Tealeaf client framework, you must have the IBM Tealeaf cxImpact license.

IBM Tealeaf CX Mobile license is required for Android Logging Framework and iOS Logging Framework.

If you do not have CX Mobile

If you did not license IBM Tealeaf CX Mobile and you have the UI Capture j2 Framework, you can not
display mobile-specific features and events during replay.

Versions of UI Capture for Ajax

Depending on the licenses that you acquired, the following versions of UI Capture are available and
determine the method by which data is captured and submitted to Tealeaf for processing. These licenses
and their supported methods also determine the type of applications that IBM Tealeaf CX UI Capture for
AJAX is able to monitor.

IBM Tealeaf CX UI Capture for AJAX is only available to legacy users. New users must use IBM Tealeaf UI
Capture

For Release 8.5 and later, the JSON version of IBM Tealeaf CX UI Capture for AJAX is the only one that is
supported. For more information about support for the legacy XML version, contact Tealeaf http://
support.tealeaf.com.

License Method of Capturing and
Submitting

Monitored applications

IBM Tealeaf CX only JSON fixed desktop web applications

IBM Tealeaf CX and
IBM Tealeaf CX Mobile

JSON fixed desktop web applications
mobile web browser applications

Versions of Logging Frameworks

For the Tealeaf Logging Frameworks, the following versions are available for this release. Logging
Frameworks require IBM Tealeaf CX Mobile license:

Depending on the licenses that you acquired, the following versions of the Tealeaf Logging Frameworks
are available and determine the method by which data is processed within Tealeaf.

IBM Tealeaf CX Client Framework Data Integration Guide  3

http://support.tealeaf.com
http://support.tealeaf.com


License Method of
Processing
Hits

Description

IBM Tealeaf CX
Mobile only

Hit-splitting When data captured from the Logging Frameworks is processed in
the Windows pipeline, messages are split into separate, individual
hits and added to the session data.

Hit-splitting is considered the legacy method of processing client
framework data. It is likely to be deprecated in a future release.

This method requires the deployment of a specific session agent in
the Windows pipeline to split hits

IBM Tealeaf CX
and
IBM Tealeaf CX
Mobile

JSON Data is captured from the client frameworks and submitted in a
compact JSON format. This data is made available in a more
readable format through Browser-Based Replay, from which you can
create step-based events and attributes for tracking purposes.

This method is the current version of processing client framework
data and is available in Release 8.5 or later.

No additional configuration is required.

Data privacy in Tealeaf client frameworks
Tealeaf client frameworks provide multiple security features to ensure that sensitive application and user
data is safeguarded for transport or retained only in the client application. Using controls that you can
configure in each client framework, you can define the specific set of data that is blocked or masked from
transport to Tealeaf.

Sensitive data that was cleansed through a client framework never reaches Tealeaf, which ensures that
your customer's interactions are secure.

• Masks can be expressed as explicit strings, replacements for character types, or custom functions.
• Extra security features.

As part of any implementation through Tealeaf Professional Services, data privacy is configured and
applied for any data that is submitted from a monitored client application. Before you enable capture of
client framework data, verify that privacy configuration was properly enabled and configured.

If you have questions about how to implement data privacy in UI Capture, contact Tealeaf Professional
Services.

Data Masking and Blocking for Client Frameworks

Do not copy or transmit sensitive data when not necessary. To protect your users' privacy, do not log
sensitive data like passwords and credit card numbers. You can see the format this sensitive data without
seeing the data when troubleshooting. Removing the content of this information is called masking.

In Release 8.5, Tealeaf introduces step-based eventing, which simplifies and unifies event capture from
all client frameworks and enhances performance. Because of changes in how the data is bundled, Tealeaf
recommends applying data privacy through the individual client frameworks, instead of using the Tealeaf
server methods for data privacy.

Limitations

Any data that is masked or blocked by a Tealeaf Client Framework is never available within Tealeaf for
processing, search, and reporting.

4  Client Framework Data Integration Guide



For data submitted from a client framework in JSON format, privacy must be applied by using the client
framework's controls. Application of privacy controls to JSON-based data after it is submitted to Tealeaf
requires advanced abilities in Tealeaf privacy controls and regular expression development.

General security features
Security features apply to communications with the target page, local storage cache, logging levels, data
masking, and data blocking.

HTTPS communications with target page

Client frameworks provide a configurable means of submitting captured events to the Tealeaf target page
by HTTPS.

There is a performance overhead in sending data over HTTPS. The performance impacts depend on the
type of application, the network bandwidth, and the network load.

To deploy HTTPS communications, you might deploy any of the provided Tealeaf target pages and
configure on the server the directory permissions for HTTPS access.

This table lists what you do to deploy HTTPS communications:

Client Framework What you do

UI Capture To configure submitting by HTTPS for AJAX, you
must configure the tlsecureurl property for the
Tealeaf target page.

No configuration is needed for UI Capture j2. The
server-side endpoint can manage both secure and
non-secure POSTs. The protocol of the POST is
determined by the protocol of the parent page.

Android Logging To configure HTTPS submissions, configure the
PostMessageUrl property in the
TLFConfigurableItems.properties file to
use the https:// protocol.

iOS Logging Framework To configure HTTPS submissions, configure the
PostMessageUrl property in the
TealeafBasicConfig.plist file to use the
https:// protocol.

Disabling local storage cache

If needed, some client frameworks can be configured to disable the local storage cache, which is used to
gather client events for submission to Tealeaf.

During cached operations, if the client framework is unable to connect to the Tealeaf target, events are
queued in a local memory buffer. If the buffer fills before the connection is restored, the last event that is
stored in the buffer is discarded.

• This buffer is cleared on restart or power down.

When the local storage cache is disabled, client events are sent as soon as they are detected by the client
framework. Since there is a data overhead for submitting a package of events, the data overhead
increases when sending a single event per package, which might affect client and network performance.

This table lists what you do to disable the local storage cache:

IBM Tealeaf CX Client Framework Data Integration Guide  5



Client Framework What you do

UI Capture For AJAX, the local storage cache size and
availability can be configured through the user's
browser.

UI Capture j2 does not support cached operations
and requires a live connection to the web server to
submit POSTs.

If a live connection to the web server that hosts the
Tealeaf target page is not available, captured UI
data is discarded.

Android Logging For the Android framework, you can configure local
cache settings, including disabling it altogether
using the HasToPersistLocalCache setting.

iOS Logging Framework For the iOS framework, you can configure local
cache settings, including disabling it altogether
using the HasToPersistLocalCache setting.

Data masking

Each client framework enables the masking of sensitive data on the client before it is submitted to
Tealeaf. Through configuration, you can identify for the client framework the objects in the monitored
application that must be masked. For example, you can indicate that each numeral in a credit card field
must be replaced by an X:

credit_card_num=XXXX-XXXX-XXXX-XXXX

This table lists what you do to configure data masking:

Client Framework What you do

UI Capture For AJAX, in the TealeafClientCfg.js file, you
can specify the fields to mask with the
tlFieldBlock array. JSON message fields can be
specified by name, ID, or class name.

For UI Capture j2, use the UIC Configuration
Wizard to specify the user input fields to mask.
Input fields can be specified by HTML ID, name,
CSS class, or any custom attribute.

If a live connection to the web server that hosts the
Tealeaf target page is not available, captured UI
data is discarded.

Android Logging Through the
TLFConfigurableItems.properties file, you
can configure the fields to mask, the masking
characters, and other features.

iOS Logging Framework Through the TealeafBasicConfig.plist file,
you can configure the fields to mask, the masking
characters, and other features.

6  Client Framework Data Integration Guide



Data blocking

Data blocking removes all values that are related to the blocked field.

As needed, you can configure the data for individual items to be blocked altogether. If the data in the data
masking example was blocked, the submitted item would be:

credit_card_num=

JSON-based values are not stored in name/value format. As a result, the configuration that is required to
block JSON-based data is different. In the example below, the value of the textbox (myLoginID) must be
masked:

{
                    "type": 4,
                    "offset": 14953,
                    "screenviewOffset": 14953,
                    "count": 5,
                    "fromWeb": true,
                    "target": {
                        "id": "qty",
                        "idType": -1,
                        "name": "qty",
                        "tlType": "textBox",
                        "type": "INPUT",
                        "subType": "text",
                        "position": {
                            "width": 36,
                            "height": 21,
                            "relXY": "0.6,0.6"
                        },
                        "currState": {
                            "value": "myLoginID"
                        },
                        "isParentLink": false,
                        "prevState": {
                            "value": ""
                        },
                        "dwell": 1609,
                        "visitedCount": 1
                    },

Since this value is stored as the value of a JSON path, you must specify the path that uses a different
method of identifying its location in the JSON data.

Client Framework What you do

UI Capture For AJAX, data blocking is configured in a similar
manner to data masking.

For UI Capture j2 data blocking is configured by
specifying identifiers, the identifier type, and the
masking properties through the Configuration
Wizard.

If a live connection to the web server that hosts the
Tealeaf target page is not available, captured UI
data is discarded.

Android Logging The configuration is similar to configuring fields for
data blocking.

iOS Logging Framework The configuration is similar to configuring fields for
data blocking.

IBM Tealeaf CX Client Framework Data Integration Guide  7



Privacy configuration for UI Capture
IBM Tealeaf UI Capture enables the blocking and masking of sensitive information within the client
browser, before the data is forwarded to IBM Tealeaf for capture, while it allows the data to be forwarded
to your web servers for normal processing. Sensitive data that was cleansed through UI Capture never
reaches IBM Tealeaf, which ensures that your customer's interactions are secure in UI Capture.

• UI Capture enables the blocking of user input data by element ID, name, or xpath.
• Masks can be expressed as explicit strings, replacements for character types, or custom functions.
• For more information about how data privacy is managed throughout the IBM Tealeaf system, see

"Managing Data Privacy in Tealeaf CX" in the IBM Tealeaf CX Installation Manual.

Note: If you have questions about implementing data privacy in UI Capture, contact IBM Tealeaf
Professional Services.

To specify a privacy rule, you must define:

• The type of identifier.
• The targets to which the rule applies.
• The type of masking to apply to the targets.

Specifying a privacy rule

In the configuration, a single privacy rule is specified within the privacy object by using the following
configuration template.

              {
                   targets: [
                       {
                           id: "htmlid",
                           idType: -1
                       }
                   ],
                   maskType: 3
               }

Specifying targets

To specify a target, you must specify the following properties.

Note: You can specify multiple id or idType targets for each masking rule.

Property
Description

id
The identifier for the target element. This value is specified according to the idType value.
In the configuration file, you can use a regular expression to specify matching identifiers. For example,
the following target configuration matches all HTML identifiers that end with _pii:

message: {
    privacy: [
        {
            targets: [
                {
                    id: { regex: ".+_pii$" },
                    idType: -1
                },
            ],
            "maskType": 3
        }
    ]
}

8  Client Framework Data Integration Guide



idType
The type of identifier. The following types are supported:

Note: Values for idType are recorded as negative numbers.

• -1 - HTML ID
• -2 - xpath identifier
• -3 - HTML name or other element attribute identifier

CSS selector
In the configuration file, you can also specify CSS selector values to match CSS elements for privacy
masking. In the example below, the designated privacy rule is applied to all password input fields:

message: {
    privacy: [
        {
            targets: [
                "input[type=password]"
            ],
            "maskType": 3
        }
    ]
}

Specifying mask type

IBM Tealeaf UI Capture supports the following mask types (maskType values):

Table 1. Privacy configuration for UI Capture j2

Value Description Example Masked Example

1 Value is blocked and replaced
by an empty string.

"HelloWorld123" ""

2 Value is masked with a fixed
string of X's

"HelloWorld123" XXXXX

3 Value is masked according to
the following parameters:

• a lowercase letter is
replaced by x.

• an uppercase letter is
replaced by X.

• a numeral is replaced by 9.
• a non-alphanumeric value is

replaced by @.

"HelloWorld123" "XxxxxXxxxx999"

4 Custom function

Note: A masking function
must be defined as
maskFunction.

"HelloWorld123 Depends on the defined
function

Privacy configuration for Android Logging Framework
In the Android Logging Framework, the settings to control data masking and blocking and the fields to use
to specify what is controlled are available in the TLFConfigurableItems.properties file.

The same method of blocking or masking is applied to all items configured to be controlled. You cannot
specify multiple methods of blocking or masking.

IBM Tealeaf CX Client Framework Data Integration Guide  9



Default Privacy Configuration for Android

In the default TLFConfigurableItems.properties file, the privacy configuration settings are
specified to mask data:

#Masking settings
HasMasking=true
MaskIdList=com.tealeaf.sp:id\/EditText*,com.tealeaf.sp:id\/login.password
HasCustomMask=true
SensitiveSmallCaseAlphabet=x
SensitiveCapitalCaseAlphabet=X
SensitiveSymbol=#
SensitiveNumber=9

In the configuration, privacy in Android is defined as follows:

• Since HasMasking=true, privacy is enabled.
• Since HasCustomMask=true, a custom mask is applied. So, data masking is enabled. If it was false,

then it would use blocking.
• The masking characters are defined in the Sensitive settings.

The list of fields in the response data to which to apply the mask is defined in the MaskIdList, where
fields are delineated by a comma. In the default configuration, there are two fields, defined by using
regular expressions.

Field
Description

com.tealeaf.sp:id\/EditText*
For the specified namespace, privacy masking is applied to all fields whose id includes /EditText.
For Android applications, this configuration applies privacy to all fields where text is entered, which is
the safest, most conservative privacy configuration.

com.tealeaf.sp:id\/login.password
For the specified namespace, privacy masking is applied any field that includes /login.password,
which might correspond to the identifier for the password field in your application.

In the above, the value before the colon in each regular expression (com.tealeaf.sp) identifies the
namespace to which the regular expression is applied.

Note: Since the default configuration does not specify the namespace of your Android mobile application,
privacy is disabled by default for applications that are monitored by the Android Logging Framework.

You can use these configuration settings or modify them to meet the requirements for your application.
The following sections describe data blocking and data masking in general, and examples are provided
later in the section.

Configuring data blocking

To configure data blocking in the Android Logging Framework, set the following values in the
TLFConfigurableItems.properties file:

Item ID
Value

HasMasking
Set this value to true.

MaskIdList
Comma-delimited ids or regular expressions to find ids.

HasCustomMask
Set this value to false.

SensitiveSmallCaseAlphabet
Do not specify a value.

10  Client Framework Data Integration Guide



SensitiveCapitalCaseAlphabet
Do not specify a value.

SensitiveSymbol
Do not specify a value.

SensitiveNumber
Do not specify a value.

When the HasCustomMask setting is set to false, the masking function returns an empty string, which is
inserted in place of the value to be masked.

For more information about these settings, see "Tealeaf Android Logging Framework Configuration File" in
the IBM Tealeaf Android Logging Framework Reference Guide.

Configuring masking

To configure data masking, you must set HasCustomMask to true and augment the example
configuration with the masking characters. These values are set in the
TLFConfigurableItems.properties file:

Item ID
Description

HasMasking
Set this value to true.

MaskIdList
Comma-delimited ids or regular expressions to find ids.

HasCustomMask
Set this value to false.

SensitiveSmallCaseAlphabet
This single value specifies the masking character that is applied to lowercase letters. It can be any
string value.

SensitiveCapitalCaseAlphabet
This single value specifies the masking character that is applied to uppercase letters. It can be any
string value.

SensitiveSymbol
This single value specifies the masking character that is applied to symbol characters. It can be any
string value.

SensitiveNumber
This single value specifies the masking character that is applied to numerals. It can be any string
value.

Privacy configuration for iOS Logging Framework
Masking functionality is configured with the Masking property in TealeafBasicConfig.plist inside
TLFResources.bundle.

Applicable iOS controls

These iOS controls can be masked:

• UITextField
• UITextFieldSecure
• UITextView
• UITextViewSecure
• UIButton
• UILabel
• UISegmentedControl

IBM Tealeaf CX Client Framework Data Integration Guide  11



• UIAlertView
• UIAlertControl

Masking Levels

A masking level tells the framework how much of the content to preserve. There are two types of masking
levels: standard and custom.

The standard masking level replaces the original content with an empty string.

The custom masking level replaces the original content with different characters.

Table 2. How logging levels work

Log Level Description Text Entered by User Text After Privacy

Standard Data is blocked. "Password123" ""

Custom Letters, numbers, and
symbols are masked by
using different
characters.

"Password123" "Xxxxxxxx#999"

How to enable masking

Masking functionality can be configured with the Masking property of TealeafBasicConfig.plist
file inside TLFResources.bundle.

To set the masking level, set the corresponding values for HasMasking and HasCustomMask properties
of the Masking list.

Table 3. Setting masking levels

Masking Level HasMasking Property HasCustomMask Property

No Masking NO

Standard Masking YES NO

Custom Masking YES YES

To mask a control, add the regular expression under the MaskingIdList property under the Masking
property to match the ID of the control. All the controls whose IDs match with the regular expression
mask based on the configured masking level.

Example: The regular expression ^9[0-9][0-9][0-9]$ matches all the controls whose IDs have four
characters, start with 9 and the remaining characters range from 0-9.

Custom masking

You can configure custom masking through the Sensitive dictionary in the
TealeafBasicConfig.plist file.

Table 4. Sensitive dictionary configuration

Configuration Description

capitalCaseAlphabet All uppercase letters are masked with the string
value for the capitalCaseAlphabet key. In the
example, the value is set to X. It is applied for
logging levels 2 and 3 in the example.

12  Client Framework Data Integration Guide



Table 4. Sensitive dictionary configuration (continued)

Configuration Description

smallCaseAlphabet All lowercase letters are masked with the string
value for the smallCaseAlphanet key. In the
example, this value is set to x.

Number All numerals are masked with the string value for
the number key. In this example, this value is set
to 9.

Symbol All non-alphanumeric characters, such as _ or @,
are masked with the string value of the symbol key.
In the example, this value is set to #.

Configuring data blocking

To apply data masking, set the standard masking level.

When the configuration is applied to the controls, no values are captured and transmitted to IBM Tealeaf.
No other configuration is required.

Migrating old masking functionality to new masking functionality

• Previous versions of the SDK support four levels of masking, which is no longer the case with the current
SDK version.

• The current version of the SDK supports only two levels of masking: standard and custom levels.
• The TagRegex property of TealeafBasicConfig.plist, which takes comma-separated regular

expressions, is replaced with the MaskIdList array property that takes regular expressions as
elements.

• The masking levels that used to be set on individual elements and controls (for example, adding key
UITextField with the value 3 under the Masking property would set UITextField with a masking
level of 3) is replaced with universal level masking across the application through the properties
HasMasking and HasCustomMask.

Data privacy in UI Capture
IBM Tealeaf CX UI Capture for AJAX enables the blocking and masking of sensitive information within the
client browser, before the data is forwarded to Tealeaf for capture, while allowing the data to be
forwarded to your web servers for normal processing.

Blocked data

Sensitive data that is cleansed through UI Capture never reaches Tealeaf, which ensures that your
customer's interactions are secure in UI Capture.

• UI Capture enables the blocking of user input data by element ID or name or both.
• Masks can be expressed as explicit strings, replacements for character types, or custom functions.

Specifying for JSON messages

Beginning in Release 8.5, the IBM Tealeaf CX platform supports the capture of JSON-based messages
from Tealeaf client frameworks, including a version of IBM Tealeaf UI Capture.

• Each JSON message corresponds to an individual step in the visitor's session. Multiple steps may exist
on a single hit, and you can create events for individual steps of a hit. See "Step-Based Eventing" in the
IBM Tealeaf Event Manager Manual.

IBM Tealeaf CX Client Framework Data Integration Guide  13



Block array fields and mask types
The data and masking functions to apply privacy are defined as objects in the tlFieldBlock array that
can be found in TealeafSDKConfig.js file of the UI Capture package. For each masking operation
applied through UI Capture, you must specify a different row in the tlFieldBlock array.

Field block array fields

For each masking operation applied through UI Capture, you must specify a different row in the
tlFieldBlock array. This array contains these fields:

Field name Description

name A regular expression string that specifies the name
of the element on the page to which to apply
privacy.
You can specify names, IDs, or both within a single
record.

id A regular expression string that specifies the ID of
the element on the page to which to apply privacy.
You can specify names, IDs, or both within a single
record.

caseinsensitive When set to true, UI Capture attempts a case-
insensitive match the name or ID. For example,
MyAttribute and myattribute both match.

Mask types

Tealeaf provides three methods for masking or blocking sensitive data.

Mask Type Description JavaScript Function

Preserve
Mask

Use this mask type to specify the
mask to use for alphanumeric
characters. Mask is specified in the
tlPrivacyMask array.

TeaLeaf.Client.PreserveMask(element);

Basic Mask Use this mask type to mask data with
a pre-defined string, such as XXXXXX

TeaLeaf.Client.BasicMask(element);

Empty Mask An empty mask removes all
characters and does not replace
them.

TeaLeaf.Client.EmptyMask(element);

Custom
Mask

You can replace any of the other calls
to Tealeaf masking functions with a
call to your own function.

N/A

These methods are available as JavaScript functions, which are referenced in the declarations of each
field in the tlFieldBlock array.

Privacy mask

If needed, you can specify a privacy mask such that a different masking character is applied depending on
the type of character. The tlPrivacyMask is specified by using these fields:

Field Description

upperChar This character is applied to uppercase alphabetical
characters. The default value is X.

14  Client Framework Data Integration Guide



Field Description

lowerChar This character is applied to lowercase alphabetical
characters. The default value is x.

numericChar This character is applied to numeric characters.
The default value is 9.

symbolChar This character is applied to symbol characters. The
default value is #.

Field Masking
You can use UI Capture to add a mask over sensitive data that must be validated on the server. In the
following example, credit card-related fields are masked by dummy characters to indicate that the data
entered. After the changes are made to TealeafClientCfg.js, the dummy field values are submitted
to the server and processed by Tealeaf.

Mask fields by using names and IDs

You can specify names and IDs by listing explicit values or by using regular expressions. Based on the
evaluation of these expressions, the specified privacy operation can be applied to one or more page
elements, including all page elements.

In the tlFieldBlock data array, you reference fields by their unique identifiers (IDs). If IDs are
unavailable, you can reference fields by name, which might not be unique.

To apply a privacy operation to a single named field:

{"name": "creditcard", ...

To apply a privacy operation to multiple named fields, separate the fields by the pipe character (|):

{"name": "creditcard|password", ...

You can also apply regular expressions to match names or IDs based on patterns. Suppose that you
defined page identifiers that require UI Capture privacy to have pvt prefix in their ID value. To apply
privacy, use the following regular expression as the value for the ID:

{"id": "^pvt", ...

You can also specify the same privacy masking operation for names and identifiers in a single record. In
this example, two regular expressions are specified for matching names and IDs. These expressions
match all values for the name and ID attributes, effectively blocking all element values from the page.

The result is that everything that is monitored by UI Capture is masked or blocked, based on the rule.

{"id": ".*", "name": ".*", ...

Mask fields by using ClassName

You can specify the fields to mask based on the CSS class for the fields. This method allows global
masking of any field that is identified by using a common class.

IBM Tealeaf CX Client Framework Data Integration Guide  15



Mask fields by using names and IDs

You can use regular expressions to specify the classname. In this example, all fields with CSS classes
that have the priv prefix are masked.

{"classname": "priv.*", ...

Specifying values for name or id is not required.

Function declarations

The masking function API is:

string mask(DOMNode element);

Where:

• element is the DOM node with the matching name or ID attribute as specified in the masking record.
• string is the masked return value that is sent by Tealeaf in the UI POST.

Limitations

UI Capture can only mask or block data that is collected through the IBM Tealeaf UI Capture. This library
does not provide access to data contained on the page, which is not managed by the library. The following
examples cannot be made private by UI Capture:

• A visitor ID embedded in the HTML of the page
• A static element that is not captured by the library, which contains the visitor's account balance or

Social Security number, or similar.

These types of sensitive data must be masked or blocked after they reach Tealeaf.

Performance

Care must be taken to keep the masking records to a minimum. Only use optimized regular expressions
and optimized code in your custom functions. A poorly configured privacy mask can have adverse impacts
on the performance of the page.

Example of blocking data from transmission
You can remove the data from being submitted to the server.

This example blocks data by referencing the EmptyMask function in the declaration:

{"id": "myElement", "caseinsensitive": false, "mask": 
  function () { return TeaLeaf.Client.EmptyMask.apply(this, arguments); }}

Default Configuration
This is the default specification for tlFieldBlock that is provided by Tealeaf.

The default configuration does not perform any masking. You must modify this code to support your
privacy requirements before you deploy the IBM Tealeaf UI Capture.

tlFieldBlock:[
        /* Sample block rules:
          // Mask all field names that have "creditcard" or "password" 
          // substrings using the PreserveMask() function.
          {"name": "creditcard|password", "caseinsensitive": true,  "mask":
            function () 
              { return TeaLeaf.Client.PreserveMask.apply(this, arguments); }}

16  Client Framework Data Integration Guide



          // Mask all field ids that match pvt0, pvt1 ... pvt9 using 
          // the EmptyMask() function.
          {"id": "^pvt[0-9]$",           "caseinsensitive": true,  "mask": 
            function () 
              { return TeaLeaf.Client.EmptyMask.apply(this, arguments); }}
          // Paranoid mode: Mask all name and id values with the 
          // BasicMask() function.
          {"id": ".*", "name": ".*",     "caseinsensitive": false, "mask": 
            function () 
              { return TeaLeaf.Client.BasicMask.apply(this, arguments); }}
        */
        ],

          // The mask used by the PreserveMask() masking function.
            tlPrivacyMask: {
              "upperChar":   "X",
              "lowerChar":   "x",
              "numericChar": "9",
              "symbolChar":  "#"
            },

Tealeaf configuration for client frameworks
You do several tasks to configure Tealeaf for client frameworks. Some of the tasks are done on the client
frameworks and some on the server.

Process

When you configure Tealeaf and the client frameworks, you:

1. Install and implement the client framework, Android, iOS, or UI Capture
2. Configure session agents
3. Configure PCA

Client framework tasks

Use the client framework documentation to configure Tealeaf for client frameworks:

1. Deploy and configure the client framework.
2. Set up data privacy in the client framework.
3. Configure sessionization on the client framework.
4. Configure sessionization on the server.
5. Configure the target page.

Windows pipeline, Reference and session agent, and WURFL

When data is captured and passed through Tealeaf, session information is analyzed and sometimes
transformed in the Windows pipeline. The pipeline is a series of configurable session agents. Each of the
agents performs one or more operations on the hit data before the agent passes the hit to the next agent
in the sequence.

Whether a mobile native application submits a user agent string is determined by the developer of the
application. To facilitate user agent detection, the Tealeaf client frameworks for Mobile App automatically
submit a user agent string and other device properties, which the Tealeaf Reference session agent uses to
populate the same values in the request that are used by Mobile web.

The Tealeaf Reference session agent is deployed in the default pipeline to verify user agent information
that is submitted by the client with each request. When a web browser or fixed browser submits a request
to a server, it typically includes a string to identify itself. This string is used by the Tealeaf Reference
session agent to perform lookups against the WURFL public standard, which identifies mobile user
agents. When WURFL is downloaded from its source and deployed, more useful information about the

IBM Tealeaf CX Client Framework Data Integration Guide  17



browser, operating system, and platform is extracted based on the user agent and inserted into the
request of the hit.

Session agent configuration

Windows pipeline session agent configuration varies based on how data is submitted and captured. Most
of the frameworks do not require additional configuration. This table lists the frameworks and whether
additional configuration is needed:

Framework Configuration

Mobile native applications For mobile native applications that use the step-
based method of submitting and capturing data, no
additional configuration is required in the Windows
pipeline.

For mobile native applications that use the legacy,
hit-splitting method of processing data inside of
Tealeaf, some session agents must be deployed in
your Windows pipeline.

UI Capture If you are using the JSON version of IBM Tealeaf UI
Capture, no additional configuration in the
Windows pipeline is required.

For mobile web applications captured by UI
Capture, deploy the Tealeaf Reference session
agent to capture user agent information for mobile
web browsers. The Tealeaf Reference session
agent is included by default in the Windows
pipeline.

PCA Configuration

By default, the IBM Tealeaf CX Passive Capture Application is configured to enable the capture of the
JSON mimetypes that is submitted by the Tealeaf client frameworks. Before you continue, verify that
these types are enabled for capture.

Each Tealeaf Logging Framework might be using a different content type for submitting events for capture
to Tealeaf. Be sure to review and verify the content type for each deployed client framework.

Framework Required Content Type to Capture

IBM Tealeaf UI Capture application/json

Android Logging
Framework

text/json

iOS Logging Framework text/json

Next steps

After the PCA was configured to capture client framework data and the client framework was properly
deployed, data is being captured by IBM Tealeaf.

After all configuration is complete, you can test for the presence of client framework data and define IBM
Tealeaf events and event-related objects to enable search and replay of sessions and to provide insightful
analysis of your applications.

18  Client Framework Data Integration Guide



Integrate client framework data into Tealeaf
The Tealeaf client frameworks let you capture user interface events and application events from the
visitor's client, which might not generate a full request from the web application. These client frameworks
are Javascript-based toolkits that are deployed through your web application and installed in the visitor's
client.

Without interrupting the customer experience, the client frameworks monitor the client application for
events of interest and transmit those events to Tealeaf for capture and processing. Through the client
frameworks, you can apply the same level of monitoring on your mobile or web applications as you can
through the browser-based applications that are monitored by IBM Tealeaf cxImpact.

Before you begin, one or more of the Tealeaf clients frameworks must be licensed, deployed, and
configured in your web application environment. Tealeaf client frameworks require the IBM Tealeaf CX
Mobile license.

General workflow

The general workflow for integrating client framework data into Tealeaf is:

1. Locate client framework sessions, including differences in how the data is posted.
2. Identify user agent information that is provided by the client framework.
3. Create step attributes from them to gather user agent data from the logging framework(s).
4. Create events from the step attributes.
5. Integrate events into existing reporting.

Prerequisites
Before you integrate client framework data into Tealeaf you must install software, make sure that your
accounts have access to the TealeafTealeaf components, configure one of the client frameworks, and
enable and configure parsers.

List of prerequisites

Before you integrate client framework data into Tealeaf you must:

1. Install IBM Tealeaf CX Release 8.4.1 or later.
2. Verify that your Portal account has access to the:

• Tealeaf Event Manager. To access the Tealeaf Event Manager, select Configure > Event Manager
from the Portal menu.

• Tealeaf Report Builder. To access the Tealeaf Report Builder, select Analyze > Report Builder from
the Portal menu.

3. Integrate one of the client frameworks is integrated with your Tealeaf application.
4. Verify that extended user agent parsing is enabled. Extended user agent parsing is enabled by default

through the Tealeaf Reference session agent, which is required in most pipelines. Use TMS to verify
that extended user agent parsing is enabled.

5. Configure user agent parsing, if necessary.
6. For UI capture only, if you deployed a version of your web application for mobile web browsers, deploy

the WURFL public standard to enable detection of mobile-based user agents.
7. For UI capture only, after you enabled user agent detection, configure events to detect mobile device

characteristics that are based on the captured and verified user agent information.

Required licenses
Tealeaf client frameworks can be deployed to capture data from the types of applications that are listed
and submitted to Tealeaf for processing. Before you begin, it is assumed that you installed and

IBM Tealeaf CX Client Framework Data Integration Guide  19



successfully deployed one of the Tealeaf client frameworks and that you verified client framework data is
being captured by Tealeaf.

Framework Required license

UI Capture j2 • CX-Extended platform license

Tealeaf Android Logging Framework • CX-Extended platform license
• Tealeaf CX Mobile license

Tealeaf iOS Logging Framework • CX-Extended platform license
• Tealeaf CX Mobile license

Use groups and labels to store events and event-related objects
Before you begin building events and event-related objects, you should consider creating groups and
labels to store them. You may build hit attributes, events, session attributes, and dimensions, so you
should try to find ways to create consistent labels in each of the appropriate tabs in the Event Manager.

This table shows lists and describes one set of labels and groups for client framework data:

Label/Group Description

Source - UIC Event objects created to track data from Tealeaf
IBM Tealeaf UI Capture

Source - Android Event objects created to track data from the IBM
Tealeaf Android SDK

Source - iOS Event objects created to track data from the IBM
Tealeaf iOS SDK

Source - Mobile Event objects created to track data from mobile
devices in general

Locating client framework sessions
This section describes the identifying markers in client framework sessions and the objects that are
provided by Tealeaf to locate these markers.

Identify client framework sessions

When client framework messages are received by the PCA, they are examined for the source of the
message. Based on the source that is detected in the x-tealeaf header in the raw request, the PCA
inserts header values for each client framework as a name-value pair in the [env] section of the request:

Client Framework Name/Value Example

IBM Tealeaf UI Capture (JSON)
HTTP_X_TEALEAF=device (uic) 
Lib/2012.06.01.1.JS

This header value is inserted only if UI Capture is
submitting JSON-based data.

20  Client Framework Data Integration Guide



Client Framework Name/Value Example

IBM Tealeaf UI Capture (XML)
HTTP_X_TEALEAF=ClientEvent

For IBM Tealeaf UI Capture solutions that use XML-
based messaging, you can locate sessions by searching
for this data in the request or for events that you create
to identify this exact name-value pair in the request.

Android Logging Framework
HTTP_X_TEALEAF=device 
(android) Lib/0.0.10

iOS Logging Framework
HTTP_X_TEALEAF=device 
(iOS) Lib/8.5.4.1

In the above name-value pairs, the value after Lib/ indicates the version number of the client framework
that captured and submitted the hit.

Note: Tealeaf provides some event objects for tracking the above items. These items are described
below. If you want to create extra step attributes and events from the HTTP_X_TEALEAF request
variable, you must create them manually through the Event Manager. When these objects are created
through the recommended method in BBR, the Event Manager identifies them as existing in the provided
set of event objects. You can work around this safeguard by manually creating them.

Objects provided by Tealeaf for mobile native applications
For mobile native applications, Tealeaf provides a set of objects to help integrating the data into your
Tealeaf data set.

Mobile Device objects

This table lists and describes the objects provided for mobile apps:

Sequence Object Description

1 Mobile Device Type hit attribute The Mobile Device Type hit attribute
that is provided by Tealeaf is designed to
identify hits that was submitted from the
mobile client frameworks.

Note: This hit attribute filters out values
that were captured from the IBM Tealeaf UI
Capture solution that were posted in the
HTTP_X_TEALEAF header. Values that are
reported in this hit attribute are for mobile
native applications only.

• A hit attribute is a Tealeaf event-related
object that checks for patterns of text or
specific strings in each request that
passes through the event engine.

• Hit attributes are defined in the Event
Manager, which is available through the
Tealeaf Portal.

IBM Tealeaf CX Client Framework Data Integration Guide  21



Sequence Object Description

2 Mobile Device event This event that is provided by Tealeaf is
triggered if the Mobile Device Type hit
attribute is found. The recorded value is the
value of the hit attribute, which is the value
between the parentheses of the request
variable.

3 Mobile Device dimension This dimension is recorded from the last
value in the session for the Mobile
Device event. Dimensions are defined in
the Event Manager, which is available
through the Tealeaf Portal.

4 Traffic Type dimension When the value for the HTTP_X_TEALEAF
variable includes iOS or android, the
value for the Traffic Type dimension is
set to MOBILE_APP. In this manner, you
can segment reporting based on whether
the type of traffic is sourced from a mobile
native application.

Sample values to create hit attributes for mobile web browsers
Sessions that are sourced from mobile web browsers are captured by Tealeaf with the IBM Tealeaf UI
Capture client framework. Tealeaf provides objects to detect and capture data from mobile web browser
sessions.

Values for a hit attribute to detect sessions sourced from UI Capture

To detect mobile native sessions that were captured from IBM Tealeaf UI Capture, you need to detect for
the UIC value in the HTTP_X_TEALEAF request variable.

Below, you can see the values that you need to assign for the Start Tag and End Tag for this hit attribute:

• Start Tag:

\r\nHTTP_X_TEALEAF=device (UIC)

• End Tag: Leave this blank.

This hit attribute applies to Release 8.5 or later. If you are using the legacy XML version of IBM Tealeaf UI
Capture, the value of the hit attribute (after the equals sign) must be ClientEvent exactly.

This condition identifies that the hit was sourced from IBM Tealeaf UI Capture.

You should create an event specifically to detect for the presence of this value in the CUI Hit attribute.
If this value changes in the future, you can update all of your event configurations by updating the
detecting event.

Values for a Mobile Web Hit event

IBM Tealeaf UI Capture can be used to track client activities for fixed browser and mobile web
applications. Mobile web applications are applications that are served to mobile clients that are
experienced through a web browser on the client device. You might find it useful for reporting purposes to
create a hit attribute and event to detect IBM Tealeaf UI Capture sessions that were served from a mobile
client browser.

When you create your event, you must add a condition that identifies the hit as being sourced from a
recognized mobile device and submitted through IBM Tealeaf UI Capture.

22  Client Framework Data Integration Guide



The Traffic Type attribute is used to detect the type of traffic, whether it is sourced from a fixed
browser, mobile browser, or some form of bot traffic. When the value of this attribute is MOBILE, the hit is
sourced from a mobile web browser, which also means that the session was captured by IBM Tealeaf UI
Capture.

When the attribute is added, your conditions for your event should look like:

Traffic type:  First Value  Equals MOBILE

The value of the hit attribute must be MOBILE exactly. Case-sensitive matching is not required.

The event must be configured to be triggered on a hit trigger (not a session trigger) and all event
conditions must be met for the event to fire.

This event is now configured to fire if the hit was received from IBM Tealeaf UI Capture from a mobile web
browser session.

Use this event as a condition to create other events, making sure that in most cases, for proper function of
the event, the hit conditions are configured so that all of the conditions are met.

Sample values to use to create hit attributes for any client framework
Hit attributes are defined in the Event Manager, which is available through the Tealeaf Portal.

CUI Hit attribute

The CUI Hit hit attribute checks for the presence of the HTTP_X_TEALEAF request variable and, if
found, gathers the value. This request variable indicates that it was submitted from one of the client
frameworks. The CUI Hit has these characteristics:

1. Name: CUI Hit
2. Description: Hit count, as reported from client user interface. Requires Tealeaf UI Capture.
3. Active: Selected
4. Search in: Request
5. Use: Start Tag/End Tag
6. Start Tag:

\r\n\HTTP_X_TEALEAF=

7. End Tag:

\r\n\

8. Case sensitive: Selected
9. Encoding: UTF-8

10. Change Case: No change

If the CUI Hit request variable is present, then the value of the request variable is stored as the hit
attribute value.

The CUI Hit hit attribute is configured to:

• Search in the request
• Search using a start tag and an end tag.

– Start Tag:

\r\n\HTTP_X_TEALEAF=

– End Tag:

IBM Tealeaf CX Client Framework Data Integration Guide  23



\r\n\

In the Start and End tags, the string \r\n is used to reference a return/newline that signals the ending of
one line and the beginning of a new one in captured data. When the request is scanned and the \r
\nHTTP_X_TEALEAF= string is detected, all values between that string and the end tag string (\r\n,
which indicates the end of the line) are gathered as the value for the hit attribute CUI Hit.

Whenever CUI Hit is used for other event objects evaluated on the same hit, the value captured by the
hit attribute is value that is used.

When the next hit arrives in the Event Engine, the hit attribute is retested, and potentially a new value is
stored in CUI Hit for reference.

Differences from Mobile Device hit attribute

You might notice that the Mobile Device hit attribute is also scanning the HTTP_X_TEALEAF request
variable.

• The Mobile Device hit attribute is interested in only the values between the two parentheses in the
request value.

• The CUI Hit hit attribute gathers all values until the end of the line. Therefore, it gathers a much wider
data set and can be used as a test of whether the hit was sourced from any Tealeaf client framework.

Attributes and events used to detect sessions
After you create event objects, you can see how sessions sourced from each framework is detected within
Tealeaf. Tealeaf uses the combination of hit attributes, events, and dimensions to detect the source of the
session captures.

Source of Session
Capture

Hit Attribute Event Dimension Session
Attribute

Android LF Mobile Device Type Mobile Device Mobile Device none

iOS LF Mobile Device Type Mobile Device Mobile Device none

UIC for JSON Create a hit attribute to
detect sessions sourced
from UI capture.

none none none

UIC for XML CUI Hit (value must be
ClientEvent)

none none none

Sample values to create events to detect messages from mobile native application sessions
Based on the event objects provided and that you created, you can detect for sessions that were sourced
from one of the mobile client frameworks or from a specific client framework

Example event to detect messages from any mobile client framework

If you are creating events to monitor data from any mobile client framework, use the Mobile Device
Type hit attribute as an event condition. Set the operator to be Hit Attribute Found

In this example, the event conditions are defined to detect for the presence of the Mobile Device
Type and a user-defined attribute, Mobile Alert Message. When both attributes exist, the event fires
when a mobile alert message is sourced from one of the logging frameworks for mobile devices.

Example event to detect a specific mobile client framework

You can also create events to track activities from a specific client framework.

For example, suppose you want to monitor mobile alert messages from your iOS application,
independently of those of a deployed Android application. In this case, you define your event conditions
to detect for the presence of a specific value for the Mobile Device Type:

24  Client Framework Data Integration Guide



You may want to create an event that detects for the specific value for the Mobile Device Type hit
attribute and records that value. You might name that event something like Mobile Session - ios.

Sample values used to detect mobile web sessions
Some sessions that are initiated by mobile devices might not be captured by the android or iOS
frameworks. Depending on your web application, it might be possible for visitors to interact with your web
application using a mobile web browser. Sessions that are initiated in this manner are not detected and
processed through the Logging Frameworks.

These types of interactions apply to IBM Tealeaf CX Mobile for Mobile Web.

Capture and detection of sessions that are sourced from mobile web browsers requires UI Capture.

Sessions from mobile web browsers that are captured from the IBM Tealeaf UI Capture solution are
detected by extended user agent parsing, which generates the data to report them as MOBILE sessions in
the Traffic Type hit attribute, which is the source for the Traffic Type dimension.

This event might already be created.

Tracking type of session
There are three sample events to identify sessions that originate from a Tealeaf client framework-enabled
application. Two are provided by Tealeaf and one you create.

this table summarizes events that you can use to eidentify sessions that originate from a Tealeaf client
framework-enabled application:

Table 5. Tracking type of session

client
framework

submitted
data type

HTTP_X_ TEALEAF
value

Detected value Capturing event

UIC for XML XML ClientEvent ClientEvent CUI Hit

UIC for JSON JSON device (UIC) 
Lib/2012.06.
01.1.JS

UIC You must create an event.

Android JSON device 
(Android) 
Lib/0.0.10

Android Mobile Device

iOS JSON device (iOS) 
Lib/8.5.4.1

iOS Mobile Device

For Release 8.4, the mobile logging frameworks used the HTTP_X_TEALEAF_DEVICE request variable,
which populated the Mobile Hit hit attribute. For Release 8.5 and later, this attribute is no longer used.

Creating a session attribute to track session type across events
To track the type of session across all of your events, create a session attribute.

About this task

Call the attribute CUI Session Type.

Procedure

1. In the Event Manager, click the Session Attributes tab.
2. Click New Session Attribute....
3. Key Properties:

Property
Description

IBM Tealeaf CX Client Framework Data Integration Guide  25



Name
Use CUI Session Type or similar.

Description
Enter something similar to the following: Source of session if it is captured from
the client using a Tealeaf client framework.

Populated By
Select one of the events that you created.

4. Click Save Draft.

Results

The session attribute is saved.

Edit events to update the session tracking attribute
Modify the events that you want to update the session tracking attribute. If you want mobile session
events to update this attrbitute,

Procedure

1. Click the Events tab.
2. Right-click one of the events you created and select Edit Event....
3. Add the attribute you created to the lists of attributes that this event updates:

a) Click the More Options tab.
b) Next, to Update Session Attribute, click Select?.
c) Select the session attribute that you just created.
d) Click Save Draft.

4. Repeat these steps for the other events you created, for example the mobile .
5. To save all changes, click Save Changes.

Results

When the created events are triggered, they record the value of the event, which is the identifier for the
type of CUI session, to the session attribute.

Adding a dimension to be sourced from session attribute
Whenever an event is triggered, the session attribute is updated, and any dimensions associated with the
event are updated. A dimension is a piece of contextual information that is recorded when an event fires.
You can use dimensions to create reporting filters to segment reporting along the type of client
framework session.

About this task

Because the events are populated only with values that are defined by the Tealeaf client frameworks, you
create the whitelist to capture these values. These values should be the same as those recorded for the
HTTP_X_TEALEAF request variable.

Procedure

1. Click the Dimensions tab.
2. Click New Dimension.
3. For the Populated By option, select the session attribute you created.
4. Click the Advanced Options caret.
5. For Values to Record, select Whitelist Only.

6. Click Edit Whitelist?

26  Client Framework Data Integration Guide



7. Specify the values in the whitelist.
8. Save the whitelist.
9. Populate the other dimension properties as needed.

10. Save the dimension as a draft.
11. Save changes to the server.

Results

This dimension can be associated with other events to segment reporting along the type of client
framework session.

User Agent Detection
You can configure Tealeaf to detect and capture user agent information that is submitted from the client
application.

User agent standards

This table lists and describes the user agent standards that Tealeaf uses. Standards are listed by
application type:

Application type User agent standard Description

desktop browser browscap Tealeaf uses the browscap
standard for capturing user agent
information that is submitted
from desktop browsers

mobile desktop browser WURFL IBM Tealeaf CX Mobile can use
the WURFL public standard for
capturing user agent information
that is submitted from mobile
web browsers

mobile native application n/a User agent information is
submitted in a consistent form by
the client framework monitoring
your mobile native applications.

One of the functions of the Tealeaf Reference session agent is to perform lookups against these public
standards for user agent information that is submitted from the client.

The Tealeaf Reference session agent must be included in every Windows pipeline in which session data is
processed.

User agent detection for UI Capture

Since the IBM Tealeaf UI Capture solution is provided for applications being served to fixed desktop
browsers or mobile web browsers, user agent information is available as part of regularly submitted
requests from these browsers, using Browscap or WURFL.

Tealeaf reference dimensions from IBM Tealeaf UI Capture solutions is written to different values in the
request.

User detection and mobile native applications

Typically, individually mobile applications send a unique user agent string that is not known to any public
repository, or they may not send a user agent at all. As a result, user agent detection for mobile native
applications cannot rely on WURFL, Browscap, or other public standard.

IBM Tealeaf CX Client Framework Data Integration Guide  27



HTTP_X_TEALEAF header and mobile native applications

To enable tracking of user agent-related information for mobile native applications, the Tealeaf client
frameworks submit the HTTP_X_TEALEAF header, which is rendered into these request variables:

Logging Framework Example submitted header

Android Logging
HTTP_X_TEALEAF=device (android) 
Lib/0.0.10

iOS Logging Framework
HTTP_X_TEALEAF=device (iOS) Lib/8.5.4.1

HTTP_X_TEALEAF_PROPERTY header and mobile native applications

The Tealeaf client frameworks also submit the HTTP_X_TEALEAF_PROPERTY header, which contains
user agent information that is extracted from the device itself.

The Tealeaf Reference session agent then uses the properties included in the above header to write out
available values in the [ExtendedUserAgent] section, in the request variables that are used by other
Tealeaf components to extract user agent information. In this manner, information that provided directly
by the Tealeaf client frameworks is used to populate user agent information throughout Tealeaf without
requiring a lookup or other reference data.

Searching for client framework sessions
The JSON messages that are submitted from the client frameworks for capture are automatically indexed
for search. Each JSON POST is converted to XML and indexed as a Request/Request body field.

Example of raw JSON

this is an example of a ras JSON message POST:

{"serialNumber":0,"messageVersion":"0.0.0.3","sessions":[{"startTime":133518041
5973,"id":"C6A2913845DA422381FC9678856F6000","messages":[{"context":{"type":"LO
AD","name":"HomeActivity_1335180416289"},"offset":318,"type":2,"contextOffset":
0},{"offset":369,"type":1,"contextOffset":50,"mobileState":{"orientation":0,"fr
eeStorage":32235520,"androidState":{"keyboardState":"HIDDEN_FALSE"},"battery":5
0,"freeMemory":164397056,"connectionType":"UMTS","carrier":"Android","networkRe
achability":"ReachableViaWWAN","ip":"0.0.0.0"}},{"offset":1357,"type":1,"contex
tOffset":1037,"mobileState":{"orientation":0,"freeStorage":32235520,"androidSta
te":{"keyboardState":"HIDDEN_FALSE"},"battery":50,"freeMemory":163835904,"conne
ctionType":"UMTS","carrier":"Android","networkReachability":"ReachableViaWWAN",
"ip":"0.0.0.0"}},{"customEvent":{"name":"Screenshot Taken for file:
android.widget.LinearLayout_1335180417333.png"},"offset":2651,"type":5,"context
Offset":2332}]}],"clientEnvironment":{"mobileEnvironment":{"android":{"keyboard
Type":"QWERTY","brand":"generic","fingerPrint":"generic
\/sdk\/generic:2.3.3\/GR
I34\/101070:eng\/test-keys"},"totalMemory":164151296,"totalStorage":12288,"orie
ntationType":"PORTRAIT","appVersion":"1.0.6","manufacturer":"unknown","userId":
"android-build","locale":"English (United
States)","deviceModel":"sdk","language":"English"},"width":480,"height":800,"os
Version":"2.3.3"}}

Example of indexed text

This is an example of the JSON message confverted to XML and indexed:

<RequestBody>
 <clientEnvironment>
  <height>800</height>
  <mobileEnvironment>
   <android>

28  Client Framework Data Integration Guide



    <brand>generic</brand>
    <fingerPrint>generic/sdk/generic:
       2.3.3/GRI34/101070:eng/test-
       keys</fingerPrint>
    <keyboardType>QWERTY</keyboardType>
   </android>
   <appVersion>1.0.6</appVersion>
   <deviceModel>sdk</deviceModel>
   <language>English</language>
   <locale>English (United States)</locale>
   <manufacturer>unknown</manufacturer>
   <orientationType>PORTRAIT</orientationType>
   <totalMemory>164151296</totalMemory>
   <totalStorage>12288</totalStorage>
   <userId>android-build</userId>
  </mobileEnvironment>
  <osVersion>2.3.3</osVersion>
  <width>480</width>
 </clientEnvironment>
 <messageVersion>0.0.0.3</messageVersion>
 <serialNumber>0</serialNumber>
  <sessions>
   <id>C6A2913845DA422381FC9678856F6000</id>
    <messages>
     <context>
      <name>HomeActivity_1335180416289</name>
      <type>LOAD</type>
     </context>
     <contextOffset>0</contextOffset>
     <offset>318</offset>
     <type>2</type>
    </messages>
    <messages>
     <contextOffset>50</contextOffset>
     <mobileState>
      <androidState>
       <keyboardState>HIDDEN_FALSE</keyboardState>
      </androidState>
      <battery>50</battery>
      <carrier>Android</carrier>
      <connectionType>UMTS</connectionType>
      <freeMemory>164397056</freeMemory>
      <freeStorage>32235520</freeStorage>
      <ip>0.0.0.0</ip>
      <networkReachability>ReachableViaWWAN</networkReachability>
      <orientation>0</orientation>
     </mobileState>
     <offset>369</offset>
     <type>1</type>
    </messages>
    <messages>
     <contextOffset>1037</contextOffset>
     <mobileState>
      <androidState>
       <keyboardState>HIDDEN_FALSE</keyboardState>
      </androidState>
      <battery>50</battery>
      <carrier>Android</carrier>
      <connectionType>UMTS</connectionType>
      <freeMemory>163835904</freeMemory>
      <freeStorage>32235520</freeStorage>
      <ip>0.0.0.0</ip>
      <networkReachability>ReachableViaWWAN</networkReachability>
      <orientation>0</orientation>
     </mobileState>
     <offset>1357</offset>
     <type>1</type>
    </messages>
    <messages>
     <contextOffset>2332</contextOffset>
     <customEvent>
      <name>Screenshot Taken for file:
         android.widget.LinearLayout_1335180417333.png</name>
     </customEvent>
     <offset>2651</offset>
     <type>5</type>
    </messages>
   <startTime>1.33518e+012</startTime>
  </sessions>
</RequestBody>

IBM Tealeaf CX Client Framework Data Integration Guide  29



Searching session using text
Use this task as an example of how to search sessions using text.

About this task

Through the Portal, you can use the following methods to search for these types of information:

Table 6. Searching Using Text

Type Example Method of Search

Value of
JSON
property

ReachableviaWWAN Values are searchable using the Text in
Request field. See "Searching Session
Data" in the IBM Tealeaf cxImpact User
Manual.

Name of
JSON
property

networkReachability Use the form field search criterion to
specify the name of a JSON property for
which you would like to search. See
"Searching Session Data" in the IBM
Tealeaf cxImpact User Manual.

Procedure

Searching sessions using events

In the steps below, you search for an event + dimension value combination. In this case, you can use the
Hit Count event and one of the following dimensions. Since this event is already associated with these
dimensions and is present in all completed sessions, no further configuration is required.

Table 7. Searching Using Events

Type of
Search

Dimension Dimension Value Description

For
specific
type of
mobile
device

Mobile Device ios or android The Mobile Device dimension
contains the appropriate
value if the hit was captured
from the named type of
device.

• See “Searching for mobile
native application sessions
from a specific type of
mobile device” on page
31.

For any
type of
mobile
device

Traffic Type MOBILE_APP The Traffic Type dimension
contains the MOBILE_APP
value if the hit was captured
from a mobile native
application.

• See “Searching for mobile
native application sessions
from any device type” on
page 31.

30  Client Framework Data Integration Guide



Searching for mobile native application sessions from a specific type of mobile device
Use this task as an example of how to search completed sessions for a specific type of mobile application
session, such as Android or iOS.

About this task

Depending on the volume of traffic to your web application, you might have to wait a while before
sufficient sessions are captured and processed by Tealeaf so that you can search for them using this
event.

This example shows how to search Completed sessions, but you can also search for active sessions.

You can narrow your search by adding extra search terms. They do not have to be event-based search
terms.

Procedure

1. In the Portal menu, select Search > Completed Sessions.

2. For the Search Range, select Only Today.
3. Clear the search criteria from the search panel.
4. In the left navigation panel, click Events. Do not select the Event Values category.
5. Click the <select an event> link.
6. In the Event Selector, select the Hit Count event.
7. Click Select.
8. The Hit Count event is selected. In the Search panel, click Any Dimension.
9. Select Mobile Device.

10. The Dimension Value Selector is displayed. Select either Android or iOS.
11. Click Select.
12. You might want to save this search for future use. To save it, click the Save icon in the toolbar.

Provide a name for the saved search, and click Save.
13. To start the search, click Search.

Searching for mobile native application sessions from any device type

About this task

In this section, you learn to search for mobile native applications that were sourced from any device type.
Using the Traffic Type dimension, you can locate mobile native application sessions.

Procedure

1. Repeat the above steps to select the Hit Count event. If you still have the search open, you can
continue with the following steps.

2. In the search term panel, click the dimension indicator. In the above example, this link is Mobile
Device - iOS.

3. In the Dimension Selector, select Traffic Type.
4. Click Select. In the Dimension Value Selector, select MOBILE_APP.
5. The search term is specified, like the following:

6. You might want to save this search for future use. To save it, click the Save icon in the toolbar. Provide
a name for the saved search, and click Save.

7. To start the search, click Search.

IBM Tealeaf CX Client Framework Data Integration Guide  31



Note: You can narrow your search by adding more search terms. They do not have to be event-based
search terms.

Results

• For more information about session search through the Portal, see "Searching Session Data" in the IBM
Tealeaf cxImpact User Manual.

Reviewing session search results
You view the results of a session search in a session list. Search results are displayed in a session list.

About this task

When sessions are returned, they are displayed in a session list.

More information about each event is available when you mouse-over the listed event.

As needed, you can configure session lists to contain columns of your choosing.

This procedure has you open a session and search the session request for the

• message header to see if a mobile device was used for the session
• traffic type to see if the traffic was from a mobile device

Procedure

1. In the left column, click the Replay icon.
2. Select BBR.
3. When the session is loaded, click the topmost entry in the Navigation pane on the left.
4. In the toolbar, click Request.
5. The displayed text is the request for the first hit of the session. Select in the request. Press CTRL+A or
Command+A to select all of the text.

6. Paste the text into a text editor.
7. Search for:

HTTP_X_TEALEAF=

8. If the request variable is found, verify that the value listed next to the above string contains either
(iOS) or (Android). If so, it is a hit from a mobile native application session.

• If your Mobile Session event definition includes mobile web sessions that are captured through
UI Capture, you might see value of ClientEvent for this request variable.

9. Search the request for:

TLT_TRAFFIC_TYPE=

• If the value for the above is MOBILE, it is a hit from a mobile web session.
• If the value is MOBILE_APP, it is from a hit from a mobile native web application.

Testing events to verify that they work as expected
After you identified a session with your event, you might find it useful to send to the Event Tester. In the
Event Tester, you test events that are in development to see whether they work as expected.

About this task

When sessions are submitted to the Event Tester, they are retained only during your current session.
After you log out or are timed out, the session is no longer available in the Event Tester.

32  Client Framework Data Integration Guide



If you installed IBM Tealeaf CX RealiTea Viewer on your local desktop, you can choose to replay the
session in RTV and then save it as a TLA file. This file can be uploaded at any time, again and again, to the
Event Tester through the Event Tester's user interface.

Procedure

1. In the left column, click the Send to Event Tester icon.
2. In the dialog, enter a memorable name for the session, such as Mobile Session.
3. Click Send to Event Tester.
4. When prompted, you can choose to go to the Event Tester to explore how it works.

5. If you are done exploring, select Configure > Event Manager to return to the Event Manager to create
more event objects.

Use groups and labels to store events and event-related objects
Before you begin building events and event-related objects, you should consider creating groups and
labels to store them. You may build hit attributes, events, session attributes, and dimensions, so you
should try to find ways to create consistent labels in each of the appropriate tabs in the Event Manager.

This table shows lists and describes one set of labels and groups for client framework data:

Label/Group Description

Source - UIC Event objects created to track data from Tealeaf
IBM Tealeaf UI Capture

Source - Android Event objects created to track data from the IBM
Tealeaf Android SDK

Source - iOS Event objects created to track data from the IBM
Tealeaf iOS SDK

Source - Mobile Event objects created to track data from mobile
devices in general

Collect environmental data with step-based events
You create step-based events to collect client environment data. You create an event for each
environment property in the message that you want to collect data on.

Process to create step-based events

To create step-based events you:

1. Create a step attribute
2. Create an event
3. Test the event
4. Repeat 1-3 for each additional environmental property that you want to collect data on
5. Create dimensions to store detected values from the events so you can generate reports for the events

Collect environment data from extended user agent parsing

If the Tealeaf Reference session agent is able to identify user agent information that is submitted from
the client framework, values are populated in the [ExtendedUserAgent] section of the request. For
example:

[ExtendedUserAgent]
TLT_BROWSER=Native
TLT_BROWSER_VERSION=Native8.5

IBM Tealeaf CX Client Framework Data Integration Guide  33



TLT_BROWSER_PLATFORM=Android
TLT_TRAFFIC_TYPE=MOBILE_APP
TLT_BROWSER_JAVASCRIPT=
TLT_BROWSER_COOKIES=
TLT_BRAND=verizon
TLT_MODEL=verizon DROIDX
TLT_SCREEN_HEIGHT=854
TLT_SCREEN_WIDTH=480

Collect environment data from JSON Messaging

More device information is available in the client environment data that is submitted with each set of
JSON messages.

When viewing a request in BBR that contains step attributes, click the Click here to view Step Attributes
link at the top of the request. Step attribute data is displayed in easy-to-read format.

At the end of the step attributes is the clientEnvironment section. This example data is from a session
that is initiated from an iOS device and captured by the iOS Logging Framework:

"clientEnvironment": {
        "mobileEnvironment": {
            "appName": "",
            "android": {
                "keyboardType": "NO_KEYS",
                "brand": "verizon",
                "fingerPrint": "verizon/shadow_vzw/
                                cdma_shadow:2.3.4/4.5.1_57_DX8-
                                51/120111:user/release-keys"
            },
            "totalMemory": 56512512,
            "totalStorage": 1711356,
            "orientationType": "PORTRAIT",
            "appVersion": "8.5.7.1",
            "manufacturer": "motorola",
            "userId": "mcbk83",
            "locale": "English (United States)",
            "deviceModel": "DROIDX",
            "language": "English"
        },
        "width": 480,
        "height": 854,
        "osVersion": "2.3.4"
    }

Top Movers

When you create events and dimensions that are associated with the client framework data set, you might
want to create Top Movers to track deviations in values for these items. For example, if you created an
event to track the value in the shopping cart at the time of checkout, you might want to create a Top
Mover to track the variations in these values over time.

If you configured your Tealeaf solution to automatically create Top Movers for new events and
dimensions, Top Movers might already be created for you.

After you gather environmental data

You created a number of event objects to locate and track important aspects of your mobile native
application or applications that are monitored by one or more Tealeaf client frameworks.

You can now create reports from this data.

For specific uses, it is helpful to create and deploy search templates, which are configured to search for
mobile native application sessions.

34  Client Framework Data Integration Guide



Creating a step attribute through BBR
Through Request view in BBR, you can review the JSON messages and then create attributes or events
(and attributes) from them.

About this task

In this example, you create a step attribute that tracks total storage for the mobile devices.

When you create the event, you use the context menu, to create a step attribute to gather the value from
the message property. Optionally, you can create an event to detect for the specific value in the request.
At the end of each menu item, you can see the path to the message property.

Procedure

1. If you have the session open in BBR, click Request.
2. In the navigational panel, click the first page in the list.
3. Click the Click here to view Step Attributes link. The client framework messages are displayed in a

more legible format.
4. Scroll down until you find the clientEnvironment section. You might notice that as you move a gray

highlight bar appears on the name-value pair in the message under the mouse point.
5. Move the mouse over the name-value pair for the event you want to collect data for. For example, the
totalStorage line. The gray bar highlights the name-value pair.

6. Right-click to open the context menu.
7. Select Create New Step Attribute from selection. The browser window that was displaying the

session list is switched to display the Hit Attributes tab in the Tealeaf Event Manager. The message
property information is loaded into the New Attribute dialog.

8. To simplify locating this item in a list, change the Name value to something you can remember. In this
example, you might name the value: Mobile - Environment - Total Storage.

9. Click Save Draft.

Creating an Event without a replay session
You do not need a replay session to create an event, you can create an event from scratch.

About this task

In the event definition, you define the event, for example Mobile - Environment - Total
Storage, to detect for the presence of the step attribute of the same name. When the event is triggered,
the value that is recorded is the value in the step attribute. In this example, the attribute is evaluated
after every step, tracked on the first match in a session, and has a numeric value.

Procedure

1. If you are not already in the Event Manager, in the Portal menu, select Configure > Event Manager.
2. Click the Events tab.
3. Click New Event.
4. Define the event properties:

Property
Description

Name
Set this value to the same as the step attribute. For example, Mobile - Environment - Total
Storage.

Description
Add a user-friendly description, for example:

from step attribute of same name

IBM Tealeaf CX Client Framework Data Integration Guide  35



Evaluate
Select After Every Step from the drop-down.

Track
If this attribute does not change at any time, select First per Session from the drop-down.

Value Type
For the type of value to record, select Numeric.

5. In the Condition step, set the conditions for the attribute to be evaluated:
a) In the left navigation panel, click the Hit Attributes category.

Note: Step attributes are stored and referenced just like other hit attributes in Tealeaf.
b) Select the attribute, for example, Mobile - Environment - Total Storage.
c) From the first drop-down, select when the attribute is tracked, for example, First Value.
d) From the second-drop down, select when the attribute is evaluated, for example, Is not empty.

6. Click the Value step. Configure the attribute value:
a) Click Select Item to Record....
b) Click the Hit Attributes category.
c) Select the attribute, for example, Mobile - Environment - Total Storage.
d) From the drop-down, verify that the selected option is set to First Match per Hit.

7. Configure the other steps of your event as needed.
8. Click Save Draft.

Testing events to verify that they work as expected
After you identified a session with your event, you might find it useful to send to the Event Tester. In the
Event Tester, you test events that are in development to see whether they work as expected.

About this task

When sessions are submitted to the Event Tester, they are retained only during your current session.
After you log out or are timed out, the session is no longer available in the Event Tester.

If you installed IBM Tealeaf CX RealiTea Viewer on your local desktop, you can choose to replay the
session in RTV and then save it as a TLA file. This file can be uploaded at any time, again and again, to the
Event Tester through the Event Tester's user interface.

Procedure

1. In the left column, click the Send to Event Tester icon.
2. In the dialog, enter a memorable name for the session, such as Mobile Session.
3. Click Send to Event Tester.
4. When prompted, you can choose to go to the Event Tester to explore how it works.

5. If you are done exploring, select Configure > Event Manager to return to the Event Manager to create
more event objects.

Saving your event to the server
After you test your attribute and event, save them to the server.

Procedure

1. From the Portal menu, select Configure > Event Manager.
2. To commit the change to the server, click Save Changes in the toolbar.
3. Enter a comment as needed. Click Commit.

36  Client Framework Data Integration Guide



Note: It might take a few moments for newly created step attributes or events to appear in the Event
Manager. However, they are immediately applied to capture stream after they are committed to the
server.

Creating dimensions from your mobile events
Whenever an event is triggered, the session attribute is updated, and any dimensions that are associated
with the event are updated. A dimension is a piece of contextual information that is recorded when an
event fires. You can use dimensions to create reporting filters to segment report along the type of client
framework session.

About this task

For example, suppose that you created an event to track application error messages that are delivered to
your visitors. While this kind of event is useful, it is important to be able to provide contextual information
for the event. Does it occur in specific versions of the application? For which models? Is it localized to a
specific locale? Answers to these questions can be useful to your developers in resolving the source of
the issue. These bits of contextual information can be captured and stored in dimensions, the values for
which are recorded when the event occurs.

One of the elements of the client environment data that can be tracked is the model of the device that is
used to initiate the session. You can create an event to track the deviceModel attribute. In this example,
you create a dimension to track the device model event, as captured by the Mobile - iOS - Device
Model event.

Procedure

1. In the Portal menu, select Configure > Event Manager.
2. In the Event Manager, click the Dimensions tab.
3. In the Dimensions tab, click New Dimension.
4. The New Dimension dialog is displayed. Specify the properties:

Property
Description

Name
Provide a readily identifiable name.

Description
Provide a user-friendly description.

5. Click the Select... button and select the event that you created.
6. Specify the values to record:

Property
Description

Values to Record
For now, set this value to Whitelist + Observed Values.

Turn On Logging
Click this button to enable logging of values. Logged values are used to create whitelists, which
are described below.

7. Leave the remaining values as their defaults.
8. Click Save Draft.
9. Click Save Changes.

10. Add a note to indicate the change. To commit your changes to the server, click Save Changes.

IBM Tealeaf CX Client Framework Data Integration Guide  37



Associating the dimension with the event

About this task

To begin capturing values for the dimension, it must be associated with one or more events through a
report group. A report group is an organizational structure that groups dimensions into a single reporting
entity. It is the report group that is linked to the event; when the event fires, currently available values for
any dimensions in the report group are recorded with the event.

Procedure

1. In the Event Manager, click the Dimensions tab.
2. In the Event Filter in the left panel, enter Application Error or another string that identifies the

name of the event with which you want to associate the event.
3. When the event is displayed in the main panel, right-click it and select Edit Event....
4. The Event wizard displays the event definition. Click the Report Groups step.
5. In the left panel, click <New Report Group.
6. Enter a meaningful name for the report group, such as Mobile Device Information.
7. Click Add Dimensions....
8. Select the dimension that you just created.
9. Populate the other fields as needed.

10. Click Save Draft.
11. In the Event wizard, the report group and dimension are displayed in the Report Groups step.
12. Click Save Draft.
13. In the toolbar, click Save Changes.
14. Enter a comment and click Commit.
15. The dimension is now associated with the new report group, which is available in the Dimensions tab.

• The report group was associated with your application error event, so whenever the application
error event occurs, the value for the device model is recorded with the event.

Capturing dimension data

You configured your dimension to capture the device model information that is captured from an event.
Currently, your dimension is configured to capture whitelisted values and observed values.

• Whitelisted values are values that you specifically configure the dimension to look for. When a value
that you added to the dimension's whitelist occurs in the capture stream, the value is recorded as
dimensional data for reporting purposes in the database.

• Observed values are any value detected in the capture stream. If the source of the dimension, an event
in this case, occurs, then the observed value is detected and recorded into the database each time that
it occurs.

Note: When the capture of observed values is enabled, each and every detected instance of the
dimension is recorded, which can quickly grow the size of the data that is stored in the database. If it is
cleared, the data growth can consume all available disk space.

So, in the default configuration, which this event uses, all observed values are recorded as independent
values. The number of device models, however, is finite, and potentially well-defined.

Note: As part of your use of this dimension, you should configure this dimension to use a whitelist after it
is allowed to gather and log values for 24 hours. In this manner, you can begin to build your whitelist until
you are ready to disable the capture of observed values, which greatly reduces the disk requirements for
storing the dimension.

• For more information about how to manage the configuration of your dimensions to minimize storage
requirements, see "Data Management for Dimensions" in the IBM Tealeaf Event Manager Manual.

38  Client Framework Data Integration Guide



Step-based eventing
Through step-based eventing, you can create Tealeaf events of these user interface events that are
generated by your rich internet application.

On the traditional, HTML-based web, user actions typically triggered a single responding action from the
web server. When you clicked a button, a form was submitted. When you clicked a link, a new page was
loaded. For applications built on this framework, an individual event might occur only once per page.

In rich internet applications, however, this paradigm was altered. Many user interactions on a page do not
change the page itself. In fact, a user can complete the same action of interest multiple times. For
example, suppose that your web application enables the entry of multiple addresses from a single form.
When Submit is clicked, the address data is submitted, and the form is cleared, enabling another entry. In
this case, the same event, SubmitAddress, can occur multiple times on the same page. In Tealeaf, you
want to be able to track all of these occurrences, instead of just the first one.

Note: A primary usage for step-based eventing is to track events that may occur multiple times on a
single page.

With step-based eventing, you can create Tealeaf events of these user interface events that are generated
by your rich internet application. In addition to creating events from individual hits, you can also create
events from steps, which are individual user actions that are captured from the client application and
submitted to Tealeaf by using one of Tealeaf's client frameworks.

• A step can be considered a "subhit" of a hit; a step reflects a discrete, trackable user action, or a server-
side action that does not result from a user action (such as a redirect).

• Steps are captured by a client framework, which is bundled together, and submitted as JSON messages
to Tealeaf. These messages are then inserted into a designated section of the request of the parent hit.

Step-based eventing enables the capture of multiple events from a single page of your client application.

Note: Step-based eventing requires licensing, installation, and configuration of one of the Tealeaf client
frameworks, including IBM Tealeaf CX UI Capture for AJAX, IBM Tealeaf Android SDK, and IBM Tealeaf
iOS SDK. Beginning in Release 8.5, new versions these frameworks are required to enable step-based
eventing. For more information, contact Tealeaf Professional Services.

Note: IBM Tealeaf CX UI Capture for AJAX is only available to legacy users.

This information provides background information about client framework-generated steps and step-
based eventing.

Technical definition of a step

A step is defined as a specially formatted JSON message that is submitted by the Tealeaf client
frameworks to represent a session state of a form field.

• Step messages can contain any type of data. The data depends on the specific client framework that is
sending the message.

• A step contains UI events from a single session only.
• In Tealeaf, these messages are submitted in JSON format and are not easy to decipher in raw format.

Step-based eventing
Step-based eventing has its own set of prerequisites, limitations, and message types. A step is defined as
a specially formatted JSON message that is submitted by the Tealeaf client frameworks to represent a
session state of a form field. Step messages can contain any type of data. The data depends on the
specific client framework that is sending the message. A step contains UI events from a single session
only. In Tealeaf, these messages are submitted in JSON format and are not easy to decipher in raw
format.

IBM Tealeaf CX Client Framework Data Integration Guide  39



Pre-requisites

To create step-based events, these components are required:

• Tealeaf Release 8.5 or later
• PCA Build 33xx. Tealeaf recommends using PCA Build 3330 at a minimum. Since PCA Build 3330, bug
fixes and new features were added that can be of interest to you, including the ability to capture IPv6
addresses and support for new Linux platforms. You must be able to configure the capture of the
application/json POST data types through the IBM Tealeaf CX Passive Capture Application.

• One or more of the Tealeaf capture solutions.

Limitations

The maximum length for selected values of text for attributes and events is 256 characters.

Distance and Sequence events operate on hits, not steps. As a result, the distance between events on
multiple steps of the same hit evaluates to zero.

Message types

Events that are captured from client frameworks are bundled together and submitted as a set of
messages. A message from a client framework is what defines a single step in Tealeaf, which is a single
event that is identified and captured by a client framework.

Multiple messages can represent a single action of the visitor. For example, clicking a radio button might
result in two messages of different types: one for the click event and one for change event.

Note: If you do not want to double count actions, use both the event type AND the ID/name when you
create events for a specific action. If you look only for ID = checkout method for example, then this
event fires twice when you only wanted it to fire once.

The volume of messages can depend on the configured logging level, which is defined in the client
frameworks. UI Capture does not support dynamic logging levels.

Example raw request body

The [RequestBody] following information includes a sample raw request, which contains a set of JSON
messages.

In the raw request, this example is a single paragraph. You cannot use the raw request body to create
step-based attributes.
While it is possible to create hit attributes from the [RequestBody] section, it is not recommended, as
this format might change over time.

[RequestBody]
{"version":"0.0.0.4","serialNumber":1,"sessions":[{"id":"ID14H2M3S663R0.36228193
267311725","startTime":1326837723663,"timezoneOffset":480,"messages":[{"type":2,
"offset":2226,"count":1,"context":{"type":"LOAD","name":"root","renderTime":
2226}},{"type":6,"offset":2230,"count":2,"exception":{"description":"Unable to
get value of the property 'nodeValue': object is null or undefined",
"url":"http://straussandplesser.com/store/js/coremetrics/eluminate.js",
"line":1}},{"type":4,"offset":24878,"count":3,"event":{"type":"click"},"target":
{"id":"[['main'],['DIV',1],['DIV',0],['TABLE',0],['TR',0],['TD',0],['DIV',0],
['P',0],['A',0]]","idType":-2,"type":"A"}},
{"type":2,"offset":24880,"count":4,"context":{"type":"UNLOAD","name":"root"}}]}]}

After the messages were passed through Tealeaf, the raw request is stored in the [RequestBody]
section of the request, which is viewable through Request View in BBR.

40  Client Framework Data Integration Guide



Example formatted request body

When the JSON messages are received, Tealeaf reformats them into a more legible format. This
information is available at the bottom of the request, which is formatted for view in Request View in BBR.
This example shows a request with four separate messages in a "messages": [] block:

{
    "version": "0.0.0.4",
    "serialNumber": 1,
    "sessions": [
        {
            "id": "ID14H2M3S663R0.36228193267311725",
            "startTime": 1326837723663,
            "timezoneOffset": 480,
            "messages": [
                {
                    "type": 2,
                    "offset": 2226,
                    "count": 1,
                    "context": {
                        "type": "LOAD",
                        "name": "root",
                        "renderTime": 2226
                    }
                },

                {
                    "type": 6,
                    "offset": 2230,
                    "count": 2,
                    "exception": {
                        "description": "Unable to get value of the property 
                        'nodeValue': object is null or undefined",
                        "url":"http://straussandplesser.com/store/js/
                         coremetrics/eluminate.js",
                        "line": 1
                    }
                },

                {
                    "type": 4,
                    "offset": 24878,
                    "count": 3,
                    "event": {
                        "type": "click"
                    },
                    "target": {
                        "id": 
                        "[['main'],['DIV',1],['DIV',0],['TABLE',0],
                         ['TR',0],['TD',0],['DIV',0],['P',0],['A',0]]",
                        "idType": -2,
                        "type": "A"
                    }
                },

                {
                    "type": 2,
                    "offset": 24880,
                    "count": 4,
                    "context": {
                        "type": "UNLOAD",
                        "name": "root"
                    }
                }
            ],
        }
    ]
}

Each message in the "messages": [] block is demarcated by a set of curly brackets.

• Data that is defined at the same level as messages (such as serialNumber or timezoneOffset) is
considered environmental data.

• Each step message is a single step.
• Step-triggered events can fire per message step.

IBM Tealeaf CX Client Framework Data Integration Guide  41



• In the preceding example, there are four-step messages. As a result, step-triggered events can fire up
to four times on this hit.

Each step-triggered event also has access to the hit attribute data of its parent hit and the environmental
data included for reference in each step.

When you create step attributes, the value that is extracted is the contents between the colon (:) and the
final comma (,) on the line.

Suppose that you want to monitor exception messages that are submitted from the client framework.
Exception messages are type 6 messages. This example shows the type 6 message from the example:

                {
                    "type": 6,
                    "offset": 2230,
                    "count": 2,
                    "exception": {
                        "description": "Unable to get value of the property
                        'nodeValue': object is null or undefined",
                        "url": "http://straussandplesser.com/store/js/
                                             coremetrics/eluminate.js",
                        "line": 1

In this example, you can see that the exception message text is stored in the description value. To
reference this value in step-based eventing, when you create the step attribute to monitor the message,
the node in the tree is referenced by using the following structure:

sessions[0].message.exception.description

The naming structures for the sessions and messages nodes are changed, and the type identifier is
omitted.

Note: When you create step attributes through BBR, you use the menu, which automatically pre-
populates the attribute with the appropriate reference within the Event Manager.

Step-based objects
In Tealeaf, you can create two types of objects to monitor events that are captured from a client
framework and passed as messages to Tealeaf:

• Step attributes are hit attributes that acquire its data from a step. Step attributes are specified in a
slightly different manner but complete an identical function.

• Step-based events are standard Tealeaf events that are configured to fire on one of the steps triggers.
As conditions, they can use any standard type of Tealeaf condition, and also step attributes.

Default step objects
Tealeaf provides a number of step-based events and attributes for use in step-based eventing.

• For more information about provided step attributes, see "Pattern Objects Reference" in the IBM
Tealeaf Event Manager Manual.

• For more information about provided step-based eventing, see "EES Reference - Tealeaf Event
Reference" in the IBM Tealeaf Event Manager Manual.

Step trigger types
To support step-based eventing, the Event Manager now provides two more trigger types:
Trigger

Description
Every Step

Event is evaluated with other events in each step.

42  Client Framework Data Integration Guide



After Every Step
Event is evaluated after every step is evaluated.

Note: This trigger is rarely used.

In the previous example, any event triggered to fire on Every Step is checked for each combination of
JSON message and environmental data. In the previous example, any Every Step event is checked for
the load, unload, exception, and other data message.

Note: Step attributes are permitted to reference objects from the parent hit. As a result, you can
reference hit attributes in step events, but not vice versa.

In the event definition, the trigger can be selected from the Evaluate drop-down:

Figure 1. Available event triggers

Available triggers are displayed in the order of evaluation. For a particular hit with underlying steps, each
Every Hit event is evaluated first, followed by each Every Step event and After Every Step
event. Then, the After Every Hit events are evaluated.

Note: The events that fire on each trigger determine the availability of data. An event can use data from
any event that fired before the current event. In a multi-hit session, the After Every Hit trigger fire on
the previous hit before the events configured to fire on Every Hit from the next hit. The same applies to
step-based triggers.

The order of firing is more accurately displayed as a nested structure:

* First Hit of Session
    * Every Hit
        * Every Step
        * After Every Step
    * After Every Hit
    * Last Hit
* End of Session

Considerations for using the After Every Step trigger
In almost all cases, when you create step attributes, you are interested in the current context of the
session. You create attributes to monitor the current data that is available as of the current step. As a
result, the After Every Step trigger is rarely used.

In the example below, the After Every Step trigger is used. This scenario mirrors the After Every
Hit trigger usage, except that it applies to steps instead of hits.

The After Every Step trigger is useful when you must compare the current state with the previous
state. For example, suppose you want to know whether users clicked the same object twice in a row.

• To test this scenario, you must know both the object currently being click, and the previously clicked
object. If the events that track both the current and previous states fire on the same trigger, they are
updated at the same time and therefore always have the same value.

IBM Tealeaf CX Client Framework Data Integration Guide  43



• However, if the previous state event fires just after the current state value by using the After Every
Step trigger, the previous state event is not updated when the current state event fires. Therefore, you
can compare the current state with the previous state by using an event that fires on the Every Step
trigger.

Note: Form messages contain the currState and prevState properties within a step. The currState
property refers to the final value of the form field after editing, and prevState refers to the default value
before editing. These references do not work for testing if the same action occurred twice, since the
default value can be reset to blank each time it is accessed.

Privacy
To manage blocking or masking of sensitive data, Tealeaf provides privacy mechanisms to manage
specific data before it is transmitted to Tealeaf.

Note: Application of privacy blocking or masking in the PCA or in the Windows pipeline requires complex
regular expressions, which can cause significant performance degradation if improperly specified. Tealeaf
strongly recommends using the privacy solution that is provided with your client framework to manage
sensitive data.

Browser based replay and step-based events
In Browser based replay, steps are displayed as subpages to the main page on which they occurred.

Any triggered events are displayed beneath them.

During replay, steps can be displayed in a more user-friendly format.

Note: Replay of step-based events in RTV is not supported.

A single web action can require multiple attributes and events to track. You can create multiple attributes,
which are inputs to a single compound event to track a single user action.

Navigable Pages List

Using the Request view of BBR, you can create hit attributes and events for steps.

When you load a session that contains JSON-based steps into BBR, the Navigable Pages List looks like:

44  Client Framework Data Integration Guide



In the preceding image, the step that is captured from the visitor's user interface are indicated by the
UIEvent label. In the preceding example, each instance also lists the range of user interface events
captured. UIEvent: 1 -4 indicates that the specific step includes 4 individual user interface events.

Figure 2. BBR Navigable Pages List

Navigable Pages List
The Navigable Pages list shows the events that were captured in a user's session. You can use the events
to create hit attributres and events for steps.

Through the request view of BBR, you can create hit attributes and events for steps. When you load a
session that contains JSON-based steps into BBR, the Navigable Pages List looks like:

A step that is captured from the visitor's user interface is indicated by the UIEVENT label. Each instance
also lists the range of user interface events captured. UIEVENT: 1 -4 indicates that the specific step
includes 4 individual user interface events.

IBM Tealeaf CX Client Framework Data Integration Guide  45



Viewing formatted JSON messages
When one of the UIEvent steps is selected, you can review the JSON messages that are submitted as part
of the step.

About this task

Note: Any BBR user can view the formatted client framework messages. To create attributes and events
from them, you must have access permissions to the Tealeaf Event Manager.

Procedure

1. Click Request in the toolbar to display the request data.
2. Click one of the UIEvent entries in the Navigable Pages List.
3. The raw JSON messages are displayed in the [RequestBody] section.
4. However, this information is not easy to read. To review the JSON messages in a more legible format,

click the Click here to view Step Attributes link at the top of the request pane.
5. The list of JSON messages are broken out into separate lines for easier reading.

• Each selectable item is a name-value pair that is highlighted when you move your mouse over it.
• Null values can be selected for creation of step-based attributes.
• Hit and event objects that you create search for the values for the specified JSON item.

Event manager processing of step-based event objects
You can create step attributes through Request view in Browser Based Replay.

Note: Creation of step attributes is not supported in RTV.

When you create objects through Browser Based Replay, the Event Manager checks to see if the selected
content is already referenced in an existing event object. If so, the Event Manager selects that object for
you to edit.

In some cases, the selected event object is provided by Tealeaf and is therefore not editable. For
example, Tealeaf provides the CUI Hit hit attribute, which references the contents of the
HTTP_X_TEALEAF request variable. When you choose to create attributes or events from the values of
this request variable, the Event Manager selects the CUI Hit attribute for you to edit. This hit attribute
cannot be edited.

Note: If you want to create more step attributes and events from session data for which attributes or
events are already created, you must create them manually through the Event Manager.

Note: There is a known issue in which the PCA fails to properly recognize UTF-8 encoding in data that is
submitted from client frameworks, and the data can be mangled in the stored session, causing issues in
eventing and search.

Note: The following information applies to IBM Tealeaf version 9.0A only.

9.0A can properly recognize UTF-8 encoding in data that is submitted from client frameworks.

Permissions for creating step-based event objects

To create step attributes, you must have permissions to access the Tealeaf Event Manager, where event-
related objects are created in the Portal.

To test access, select Configure > Event Manager

Required access

Note: To create step attributes, you must have permissions to access the Tealeaf Event Manager, where
event-related objects are created in the Portal.

To test access, select Configure > Event Manager.

46  Client Framework Data Integration Guide



BBR step attribute context menu
Use the BBR step attribute context menu to create a new event from a step attribute or to create a new
step attribute.

About this task

Note: To access the BBR step attribute context menu, you must have access to the Event Manager.

Procedure

1. Select a page from the page navigation list in BBR.
2. Right-click a name-value pair in the formatted JSON message.

3. From the context menu, select one of the following options:

• Create New Event from Step Attribute selection to create a step-based event and any necessary
hit attribute to gather the data.

• Create New Step Attribute from selection to create a step attribute.

Creating a step attribute
When you select a JSON item in BBR and choose to create a step attribute, the Event Manager is opened
in the browser window currently opened to the Portal.

The following dialog is displayed:

Note: Depending on your browser type and configuration, you can manually switch over to the Portal
window.

Figure 3. Creating a step attribute

IBM Tealeaf CX Client Framework Data Integration Guide  47



Step attributes are commingled with hit attributes. They do not belong to a special category. What defines
an attribute as a step attribute are the properties that are listed.

Table 8. Key Properties:

Attribute Properties Description

Use Step Pattern For step attributes, the Use Step Pattern radio button is selected for you,
which enables specification of the xpath to the node whose value you want to
track.

• When a step pattern is used to identify an attribute, the check is completed
by using a case-sensitive search by default. If you choose to change the
type of pattern tag to a step pattern, the existing case-sensitive settings are
preserved.

Step Attribute
Path

The Step Attribute Path value contains the node information to uniquely
identify the JSON value to acquire in the attribute. For the preceding example,
the path is:

.sessions[0].message.exception.description

This provides a unique path to the description value for the exception
message that was submitted from a client framework to Tealeaf.

Note: You can complete the same Post-Match Operations on a step attribute that you can complete on a
hit attribute.

Data format
The values of step attributes are always treated as text patterns. As a result, operators such as equals
perform text-based comparisons, even if the captured value is a numeric or Boolean value.

Data availability
Like the hits that contain them, steps are processed in isolation from all other steps. For example, if you
want to use data from step 1 for use on step 2, you must create an event to record the data from step 1
for later use.

• Since each step is associated with a parent hit, any hit attributes triggered on the parent hit are
available for reference in each step of the hit.

• However, step attributes are available only within the single step that is being evaluated.
• If you want to use a hit attribute in a step attribute, the event trigger must be configured to be evaluated

on one of the step triggers.
• Data from events that are triggered on previous steps is available in later steps.

Using data between step attributes
A step triggered event uses only data that is contained in the step in which it is triggered, which is a
similar behavior to how hits are triggered.

To use data from step 1 in step 2, you must record the data from step 1 in an event and then reference
the event in step 2.

For example, suppose your request data for a single hit looks like:

[appdata]
TLT_URL=/tealeaftarget.php
TLT_CUI_URL= /checkout

[StepAttributes]
                {
                    "type": 4,
                    "offset": 8063,

48  Client Framework Data Integration Guide



                    "count": 1,
                    "event": {
                        "type": "change"
                    },
                    "target": {
                        "id":  firstname",
                        "idType": -1,
                        "type": "INPUT",
                        "dwell": 2196,
                        "currState": {
                            "value": "MyName"
                        }
                    }
                },
                {
                    "type": 4,
                    "offset": 2293,
                    "count": 2,
                    "event": {
                        "type": "click"
                    },
                    "target": {
                        "id": "login:guest",
                        "type": "INPUT",
                        "subType": "radio",
                        "currState": {
                            "checked": true,
                            "value": "guest"
                        }
                    }
                },

In the preceding data:

• [appdata] data is available through standard hit attributes.
• There are 2-step messages:

– Step 1: The first step identifies the change client event, in which the firstname form field is set to
MyName.

– Step 2: The second step identifies the click client event, in which the login.guest element is set
to guest.

A single step-triggered event cannot use data from both step 1 and step 2 at the same time. For example,
you cannot create a step-triggered event that fires on the click message and records the value of the
firstname value by using only step attributes.

To capture the value of Step 1 based on the condition of Step 2, you must:

• Create a step attribute to capture firstname's value on Step 1.
• Create an event that records the value of the step attribute for Step 1.
• Create an event that fires on the click for guest and uses the value for the Step 1 event for the guest

value.

Important notes on step-based eventing

• A single web action can require multiple attributes and events to track. You can create multiple
attributes, which are inputs to a single compound event to track a single user action.

IBM Tealeaf CX Client Framework Data Integration Guide  49



Capturing a specific value
By default, a step attribute captures all possible values for the selected JSON path. When the attribute is
specified, any value that is detected for the node becomes the value for the attribute.

About this task

In some situations, you can gather in the step attribute only specified values. For example, suppose that
you are tracking the following JSON path:

.sessions[0].message.clientState.event

By default, any step attribute can capture any instance of any value. So, your attribute can capture values
such as load, attention, resize, or scroll. Suppose that you are interested in creating a step
attribute to track only the scroll values. After you create the step attribute through BBR, you can
complete the following modifications to the attribute definition through the Event Manager.

Procedure

1. Edit the step attribute.
2. Click thePost Match Operations caret.
3. Select the User RegEx check box.
4. In the RegEx textbox, enter:

scroll

5. To save the change, click Save Draft.
6. To commit the change, click Save Changes.

Results

Now, the step attribute records only the instances of the scroll value for the specified JSON path.

As an alternative, you can specify a step attribute without using the RegEx portion. When you use the step
attribute in an event, specify that the value of the step attribute equals scroll.

Creating a step event
When you select a JSON item in BBR and choose to create an event, the Event Manager is opened in the
browser window currently opened to the Portal. The Event Wizard is displayed.

Note: Depending on your browser type and configuration, you can manually switch over to the Portal
window.

The default event checks every step to see whether the JSON item is present and records the last
occurrence in the event by default. Using this configuration, you can track the number of sessions in
which the event occurred.

Note: If you cancel creation of a step-based event, you must revert the step attribute, if created, through
the Hit Attributes tab.

50  Client Framework Data Integration Guide



Triggers for step objects
Step-based events can be evaluated on the Every Step and After Every Step trigger.

Triggers for compound events using step-based events as conditions
There are specific triggers that must be applied when compound events use step-based events as
conditions.

Note: If you are creating an event with multiple conditions that uses one or more step-based events, you
must set the event to be evaluated on After Every Hit. That trigger is evaluated after Every Hit,
Every Step, and After Every Step, in that order.

Tracked Occurrences for step events
For any event that is triggered off step-based data, you must configure it to track occurrences at the
individual hit level.

Note: Do not use session-level tracking, as those options operate only on the first or last hit of the
session.

Condition step
When you create an event to track a JSON message item, the step attribute that is required to detect the
name-value pair is also created in draft mode for you. For such scenarios, the Hit Attribute condition
specifies the step attribute that the Event Manager has also created for you.

The Event Manager pre-populates the event definition with properties to identify the specific JSON item
to track.

Figure 4. Creating a step-based event - Condition step

Note: For step attribute conditions, Match Count and Last Value value tests are not useful, as there
is only one unique match and its value for a specified property on the hit.

Note: If you do not want to double count actions, use both the event type and the ID/name when you
create events for a specific action.

• If you look only for ID = checkout method, then this event fires twice when you only wanted it to
fire once. Suppose you want to track clicked objects. Each object has the event type click.

• To track clicks of a specific object, you must specify both the event type and object ID.

• If a step attribute with the same properties exists, the Event Manager uses the existing step attribute.
• As needed, you can add extra conditions to the event you are creating.

Table 9. Key Properties:

Attribute Properties Description

Icon You must select an identifying icon for your step-based events.

IBM Tealeaf CX Client Framework Data Integration Guide  51



Table 9. Key Properties: (continued)

Attribute Properties Description

Labels You can organize your step-based events into labels within the Event
Manager.

Evaluate Set the trigger to be either of the step-based triggers.

Track Set the occurrences to track to monitor the first or last occurrence in the
session or every occurrence.

• If you want to track the number of sessions in which the event occurrence,
set the value to Last Occurrence.

• If you want to track each time that the event occurred in a session, set the
value to Every Occurrence.

Value Type Step-based events can track numeric or text values or the count of
occurrences of the event.

Value step
The value of step-based events can be specified like any other event.

Figure 5. Creating a step-based event - Value step

Other steps
For step-based events, you can configure the other steps as you would any other event.

Advanced Mode
To see the native JavaScript created for your step-based event, click Advanced Mode.

Creating a dimension
After you create the step attribute, event, or both to track a value in a submitted message, you can create
a dimension to record values from the event or attribute in the standard manner.

Note: Dimensions that are populated by step attributes or events can capture new values from multiple
steps in a hit.

Support statement for creating step attributes and events in RTV
Creation of step attributes and events is not supported in RTV.

In request view, you can review the raw JSON messages in the [RequestBody] section of the request.

You can use RTV to save test TLA sessions, which can be loaded into the Event Tester to use as test data
for step-based events.

52  Client Framework Data Integration Guide



In Event Tester
In the Event Tester, you can validate the triggering of step-based attributes and events. Step attributes
and the events that are triggered from them are displayed as regular hit attributes and events in the test
results.

Note: After you create step-based objects, it can take a few minutes before they are available for
selection in the Event Tester.

Indexing and step-based events
Step-based event data is not indexed by default. You can, however, search for events through BBR and
RTV.

It is possible to move data from one location in the request into another section which is automatically
indexed for search.

Note: If you must index some JSON-based session data for search, you must use a privacy rule to insert
the data into the [appdata] section. Creation of the rule requires configuration of a regular expression to
locate the data. Regular expressions are considered an advanced configuration option, as if they are
poorly specified, they can significantly impact system performance.

• For more information about configuring regular expressions, contact Tealeaf http://support.tealeaf.com.
• Use of privacy rules against JSON message data is likely to be supported in a later release.

Reference information about BBR and Events
Use the information here to find the IBM Tealeaf publications that contain information about BBR and
Events.
Section

Description
"CX Browser Based Replay" in the IBM Tealeaf cxImpact User Manual

BBR documentation
"Browser Based Replay Interface" in the IBM Tealeaf cxImpact User Manual

How to use BBR, including how to access request view
"TEM Hit Attributes Tab" in the IBM Tealeaf Event Manager Manual

How to create hit attributes or step attributes in Event Manager
"TEM Events Tab" in the IBM Tealeaf Event Manager Manual

How to create events in Event Manager
"UI Capture for Ajax Guide" in the IBM Tealeaf UI Capture for Ajax Guide

Reference guide for the IBM Tealeaf CX UI Capture for AJAX solution
"Tealeaf Android Logging Framework Reference Guide" in the IBM Tealeaf Android Logging
Framework Reference Guide

Reference guide for the IBM Tealeaf Android SDK
"Tealeaf iOS Logging Framework Reference Guide" in the IBM Tealeaf iOS Logging Framework
Reference Guide

Reference guide for the Tealeaf IOS Logging Framework
"Event Tester" in the IBM Tealeaf Event Manager Manual

Portal-based Event Tester displays step-based attributes and events transparently
"Searching Session Data" in the IBM Tealeaf cxImpact User Manual

Searching for sessions through the Portal
"RealiTea Viewer - Request View" in the IBM Tealeaf RealiTea Viewer User Manual

Request view page for RTV.

Note: You cannot create step attributes through RTV.

"RealiTea Viewer - Session Search and Subsearch" in the IBM Tealeaf RealiTea Viewer User Manual
Searching for sessions through RTV

IBM Tealeaf CX Client Framework Data Integration Guide  53

http://support.tealeaf.com


"Configuring CX Indexing" in the IBM Tealeaf CX Configuration Manual
How sessions are indexed and how data is added for indexing

"Privacy Session Agent" in the IBM Tealeaf CX Configuration Manual
Session agent that is used to move content in the request

Eventing for cxOverstat
IBM Tealeaf cxOverstat enables the capture of usability information from the visitor's web experience, as
detected in the client and transmitted to Tealeaf. This information is anonymously collected for reporting
purposes. Events can be used to specify specific conditions, such as a period of time, to record
information.

Note: IBM Tealeaf cxOverstat is a separately licensable product of the IBM Tealeaf CX platform. For more
information, contact your representative.

When the IBM Tealeaf cxOverstat JavaScripts are deployed on pages or ScreenViews of your web
application, usability data such as X-Y location, relative location, and focal point are captured and
transmitted to Tealeaf. A provided set of events is designed to capture the usability data.

• You can optionally associate other events with usability dimensions by using the report group templates
that are provided by Tealeaf.

In this section, you learn more about the usability data that is captured for IBM Tealeaf cxOverstat, the
data objects that are provided by Tealeaf to record them, and other eventing possibilities for usability
data.

• The maximum length for selected values of text for attributes and events is 256 characters.

cxOverstat usability data
IBM Tealeaf cxOverstat data is submitted from the IBM Tealeaf UI Capture solution, when it was enabled
for IBM Tealeaf cxOverstat.

IBM Tealeaf cxOverstat data comes in the following forms:

Type
Description

Comparison Analytics
With the Comparison Analytics overlay, you can view selected metrics for a web page and apply
specific segments and filters to create customized reports.

• For more information about this feature, see "Comparison Analytics Overlay" in the IBM Tealeaf
cxOverstat User Manual.

Heat mapping
Identifies regions on a page or ScreenView where visitors click, regardless of whether an object was
selected.

• For more information about this feature, see "Using Heat Maps" in the IBM Tealeaf cxOverstat User
Manual.

Attention mapping
Identifies the regions on a page or ScreenView that are most frequently displayed within the visitor's
browser window.

• For more information about this feature, see "Using Attention Maps" in the IBM Tealeaf cxOverstat
User Manual.

Form
Identifies visitor activities on forms on a page or ScreenView.

• For more information about this feature, see "Using Form Analytics" in the IBM Tealeaf cxOverstat
User Manual.

54  Client Framework Data Integration Guide



Link
Identifies links that are most frequently selected by visitors to a page or ScreenView.

• For more information about this feature, see "Using Link Analytics" in the IBM Tealeaf cxOverstat
User Manual.

Usability Eventing
To support the tracking and recording of usability activities on your web application, IBM Tealeaf provides
a set of event objects to process usability data that is submitted in JSON format from the client
framework.

For more information about the schema, see "Tealeaf JSON Object Schema Reference" in the IBM Tealeaf
Client Framework Data Integration Guide.

• For more information about the properties that pertain to IBM Tealeaf cxOverstat, see "Tealeaf JSON
Properties" in the IBM Tealeaf Client Framework Data Integration Guide.

Usability eventing

To support the tracking and recording of usability activities on your web application, IBM Tealeaf provides
a set of event objects to process usability data that is submitted in JSON format from the client
framework.

cxOverstat objects must be enabled

In addition to providing the standard reporting and search capabilities, IBM Tealeaf cxOverstat events are
also used by the usability application itself. For example, when the Tealeaf user chooses to display the
Form Analytics overlay in Browser Based Replay, the usability components in BBR query the Reporting
database for the event data that pertains to form analysis for the current page or ScreenView.

Note: For correct capture and display of usability data in the IBM Tealeaf cxOverstat overlays in Browser
Based Replay, all hit attributes, events, and dimensions must be enabled through the Event Manager. By
default, these objects are installed and enabled. Disabling can disable usability functions and data.

Goal Based Dimensions

By default, Tealeaf publishes event data as soon as the Canister detects and processes it. IBM Tealeaf
cxOverstat events, however, are configured to publish their event data at the end of the session. The
event values that were detected at the time the event fired are recorded, but the recording does not occur
until the session is completed by the user, or session timeout. This method for event publishing enables
the support of the capturing of the dimension values associated with the event from their last occurrence
in the session.

For example, suppose you use a dimension to capture whether a purchase was made. Since that
information is not known until the end of the session, you can delay the publishing of IBM Tealeaf
cxOverstat events and their related dimensions until the end of the session so the definitive answer (Yes
or No) is captured in the dimension value.

Note: All IBM Tealeaf cxOverstat events are configured to have their data published at the end of the
session. This setting cannot be modified for these events.

See "Goal Based Dimensions" in the IBM Tealeaf Event Manager Manual.

Data storage
After the IBM Tealeaf cxOverstat step attributes and events are triggered, they are recorded in the
standard locations for Tealeaf.

Session

When the Event Engine detects an event, it records the event as data in the request of the hit on which the
event occurred, along with any related dimensional data. IBM Tealeaf cxOverstat events are recorded in
this manner.

Below is an example recording of the event + dimension combination in a request:

IBM Tealeaf CX Client Framework Data Integration Guide  55



• These elements of data are written to the bottom of the request for each event that is triggered on the
hit.

[TLFID_359]
Searchable=True
TLFID=359
TLFactValue=200
TLDimHash1=C6F8B06175B0630687EB80DF913A30CE
TLDimHash2=B0437419D4F0575FABDB726AAE61039C
TLDimHash3=3CFBA54F6873DFD55B0B09D32910B20E
TLDimHash4=0BDB5F014A7574C3B6DCCAD319321FED
TLDimHash5=7954797EAEBD4BD8B816EA63AF1CE05A
TLDimHash6=7954797EAEBD4BD8B816EA63AF1CE05A
TLDimHash7=7954797EAEBD4BD8B816EA63AF1CE05A
TLDimHash8=7954797EAEBD4BD8B816EA63AF1CE05A
TLDim1=/store/defaultpage
TLDim2=www.straussandplesser.com
TLDim3=store
TLDim4=206.169.17.19
TLDim5=TLT$NULL
TLDim6=TLT$NULL
TLDim7=TLT$NULL
TLDim8=TLT$NULL

For the listed event + dimension combination ([TLFID_359]), the event value (TLFactValue) is
recorded for the Searchable event.

• Beneath the event value, each possible dimension value is listed in both hashed (TLDimHash) and
standard (TLDim) form.

• Hashed dimension values are stored to support searching for dimension values that are longer than 32
characters. See "Searching Session Data" in the IBM Tealeaf cxImpact User Manual.

• For more information about request view in BBR, see "CX Browser Based Replay" in the IBM Tealeaf
cxImpact User Manual.

• For more information about the data that is stored for events and dimensions in the request, see the
[TLFID_] section in "RealiTea Viewer - Request View" in the IBM Tealeaf RealiTea Viewer User Manual.

Database

Usability data is stored as event counts of the predefined usability events. This data is stored in the
Reporting database as normal event data. When a page or ScreenView for stored usability data is
displayed in BBR, the application queries the Reporting database for the correct event counts to display in
the selected overlay

Session

When the Event Engine detects an event, it records the event as data in the request of the hit on which the
event occurred, along with any related dimensional data. IBM Tealeaf cxOverstat events are recorded in
this manner. Below is an example recording of the event + dimension combination in a request:

• These elements of data are written to the bottom of the request for each event that is triggered on the
hit.

[TLFID_359]
Searchable=True
TLFID=359
TLFactValue=200
TLDimHash1=C6F8B06175B0630687EB80DF913A30CE
TLDimHash2=B0437419D4F0575FABDB726AAE61039C
TLDimHash3=3CFBA54F6873DFD55B0B09D32910B20E
TLDimHash4=0BDB5F014A7574C3B6DCCAD319321FED
TLDimHash5=7954797EAEBD4BD8B816EA63AF1CE05A
TLDimHash6=7954797EAEBD4BD8B816EA63AF1CE05A
TLDimHash7=7954797EAEBD4BD8B816EA63AF1CE05A
TLDimHash8=7954797EAEBD4BD8B816EA63AF1CE05A
TLDim1=/store/defaultpage
TLDim2=www.straussandplesser.com
TLDim3=store
TLDim4=206.169.17.19
TLDim5=TLT$NULL

56  Client Framework Data Integration Guide



TLDim6=TLT$NULL
TLDim7=TLT$NULL
TLDim8=TLT$NULL

For the listed event + dimension combination ([TLFID_359]), the event value (TLFactValue) is
recorded for the Searchable event.

• Beneath the event value, each possible dimension value is listed in both hashed (TLDimHash) and
standard (TLDim) form.

• Hashed dimension values are stored to support searching for dimension values that are longer than 32
characters. See "Searching Session Data" in the IBM Tealeaf cxImpact User Manual.

• For more information about request view in BBR, see "CX Browser Based Replay" in the IBM Tealeaf
cxImpact User Manual.

• For more information about the data that is stored for events and dimensions in the request, see the
[TLFID_] section in "RealiTea Viewer - Request View" in the IBM Tealeaf RealiTea Viewer User Manual.

Database

Usability data is stored as event counts of the predefined usability events. This data is stored in the
Reporting database as normal event data.

When a page or ScreenView for stored usability data is displayed in BBR, the application queries the
Reporting database for the correct event counts to display in the selected overlay.

cxOverstat step attributes
To facilitate the tracking of usability data that is submitted from UI Capture, Tealeaf provides a set of step
attributes to track this information.

• When IBM Tealeaf cxOverstat is licensed and enabled, these attributes are automatically enabled, and
Tealeaf is tracking usability data.

Note: If you are licensing IBM Tealeaf cxOverstat for an existing Tealeaf installation, you must use the
Tealeaf Upgrader to install the IBM Tealeaf cxOverstat event objects. See "cxOverstat Installation and
Configuration" in the IBM Tealeaf cxOverstat User Manual.

• A step attribute is a hit attribute that is configured to track values that are stored in JSON data that is
submitted from a client framework. See "Step-Based Eventing" in the IBM Tealeaf Event Manager
Manual.

• In the Events tab, these step attributes are contained in the System Step Attributes.
• For more information about the step attributes pertaining to IBM Tealeaf cxOverstat, see "Tealeaf JSON

Properties" in the IBM Tealeaf Client Framework Data Integration Guide.

– For more information about all event objects that are provided by Tealeaf, see "Tealeaf Standard
Event Object Reference" in the IBM Tealeaf Event Manager Manual.

cxOverstat events
Usability events require dimensional data in order for them to properly function. The following events are
provided by Tealeaf for IBM Tealeaf cxOverstat, and associated with each of these events is a set of pre-
configured dimensions.

• In the Events tab, these events are contained in the System Step Events.
• Building block events are not displayed in the Portal at all.
• By default, the non-building block events for IBM Tealeaf cxOverstat are configured to be displayed in

the Portal for search and reporting purposes. However, they are configured to not be displayed in
session lists in the Portal, which includes QuickView and the Page List. While you can modify the event
definitions to display them in these views, they are likely to be displayed in every session and thus
clutter the display. See "TEM Events Tab" in the IBM Tealeaf Event Manager Manual.

Note: Except to add or remove dimensions that you created, do not edit these System Step Events. Do not
edit the event definitions or remove any of dimensions that are listed for each event.

IBM Tealeaf CX Client Framework Data Integration Guide  57



Primary Reporting Events
Usability attention map view time, usability click, and usability form field visit are the primary events that
are used for the reporting of IBM Tealeaf cxOverstat data.

Table 10. Primary Reporting Events

Event Name Description Default Dimensions

Step -
Usability
Attention
Map Y View
Time

Attention View Time (Y) Event for Usability
data

• ScreenView URL
• Step - ScreenView
• Step - Usability Focal Slice Y
• Step - Usability View Port Height

Step -
Usability
Click

Click event for Usability data. This event is
used for comparison analytics, heat maps,
and link analytics data.

• Step - ScreenView URL
• Step - ScreenView
• Step - Target ID
• Step - Target Relative XY

Step -
Usability
Form Field
Visit

Field Visits + Dwell time for Event for
Usability data

• Step - ScreenView URL
• Step - ScreenView
• Step - Target ID

By using viaTealeaf, you can access a set of reports that are configured for the usability data that is
submitted to Tealeaf.

Building block events
A "building block" event is available in the Short Term Canister while the session is being captured. The
event expires when the session is closed and moved to the Long Term Canister. Building block events
cannot be used in search or reporting.

See "TEM Events Tab" in the IBM Tealeaf Event Manager Manual.

The following table describes the building block events that are defined. These events are unlikely to
need modification.

Table 11. Building Block Events

Event Name Description Default Dimensions

Step -
ScreenView
(BB)

(Building Block) Latest ScreenView from
ScreenView LOAD message

None

Step -
ScreenView
URL (BB)

(Building Block) Latest URL from
ScreenView LOAD message

None

Step -
Usability
Attention
Map
Viewport
Height

Normalized Viewport height (min of
Viewport or Page height)

Note: This event can be reviewed and
modified in JavaScript only.

None

Step -
Usability
Focal Slice Y
(BB)

(Building Block) Focal Slice BB event for
Usability data

Note: This event can be reviewed and
modified in JavaScript only.

None

58  Client Framework Data Integration Guide



Table 11. Building Block Events (continued)

Event Name Description Default Dimensions

Step -
Usability
Target ID +
Type (BB)

(Building Block) Combines Target ID and ID
Type into a single string

Note: This event can be reviewed and
modified in JavaScript only.

None

• For more information about the events that pertain to IBM Tealeaf cxOverstat, see "Tealeaf JSON
Properties" in the IBM Tealeaf Client Framework Data Integration Guide.

– For more information about all event objects that are provided by Tealeaf, see "Tealeaf Standard
Event Object Reference" in the IBM Tealeaf Event Manager Manual.

cxOverstat dimensions
To capture IBM Tealeaf cxOverstat data for reporting purposes, Tealeaf provides a set of dimensions,
which are used to store client usability data.

To locate these dimensions, enter Step in the filter text box in the Dimensions tab.

Table 12. cxOverstat Dimensions

Dimension
Name

Description Source Event

Step -
ScreenView

Records the latest Screenview for each
Screenview LOAD message

Step - ScreenView [BB]

Step -
ScreenView
URL

Records the latest URL for each Screenview
LOAD message

Step - ScreenView URL [BB]

Step - Target
ID

ID of object that is acted on Step - Usability Target ID + type [BB]

Step - Target
Relative XY

Records the relative position of the action
that is based on the object that is acted on

Step - Target Relative XY

Step -
Usability
Focal Slice Y

Records the Y focal slice.

• Dimension includes a predefined
whitelist of values for bucketing of slices
for reporting.

Step - Usability Focal Slice Y [BB]

Step -
Usability
View Port
Height

Viewport height of the browser window that
explores usability overlays

• Dimension includes a predefined
whitelist of values for bucketing of slices
for reporting.

Step - Usability Attention Map Y View Time

For more information about the dimensions that pertain to IBM Tealeaf cxOverstat, see "Tealeaf JSON
Properties" in the IBM Tealeaf Client Framework Data Integration Guide.

For more information about all event objects that are provided by Tealeaf, see "Tealeaf Standard Event
Object Reference" in the IBM Tealeaf Event Manager Manual.

IBM Tealeaf CX Client Framework Data Integration Guide  59



cxOverstat report groups
IBM Tealeaf cxOverstat provides a set of report groups that contain the provided IBM Tealeaf cxOverstat
dimensions. These report groups are predefined to contain only the dimensions that are required for IBM
Tealeaf cxOverstat.

The following list displays the dimensions:

• Usability - Attention Map
• Usability - Click
• Usability - Form Analytics

IBM Tealeaf recommends creating separate report groups for use with the IBM Tealeaf cxOverstat
system dimensions and then add dimensions as needed. These custom report groups can be added,
modified, and removed as needed.

Note: After a dimension is added to any report group and committed to the database, it cannot be
removed. Since you are not allowed to remove the default IBM Tealeaf cxOverstat report groups from the
IBM Tealeaf cxOverstat events, any dimensions added to these report groups are retained permanently.

cxOverstat report group templates
For IBM Tealeaf cxImpact, the base report group template is Standard. This report group template
supports up to four dimensions of your choosing.

For IBM Tealeaf cxOverstat, if you want to associate the usability data with other dimensions for cross-
dimensional reporting, you can use report group templates as the basis for creating new report groups. A
report group template is a template that contains pre-configured dimensions for a new report group when
it is created. The report group template can be selected when you create a report group.

Note: You can create multiple of custom report groups from these templates. Only report groups that are
based on these associated templates are available for usability events.

Note: You cannot make report group templates.

Figure 6. Creating report groups with a Usability template

The following report group templates are available to capture for IBM Tealeaf cxOverstat:

Note: A report group that is created from one of the IBM Tealeaf cxOverstat report group templates can
contain up to eight dimensions.

60  Client Framework Data Integration Guide



Note: After you select a report group template, choosing a new report group template automatically
removes all dimensions from the report group and starts with the included dimensions of the newly
selected report group template.

Table 13. cxOverstat Report Group Templates

Name Description

Usability - Click Events operating on comparison analytics, heat map, or link analytics data
require these contextual dimensions

Usability -
Attention Map

Events operating on attention map data require these contextual dimensions

Usability - Form
Analytics

Events operating on form analytics data require these contextual dimensions

See "TEM Dimensions Tab" in the IBM Tealeaf Event Manager Manual.

Tracking other usability events
The IBM Tealeaf UI Capture solution provides more usability data that is not natively captured by Tealeaf.
Specifically, you can create custom step messages to submit data of interest to you pertaining to the
client activities of your web application.

See "Step-Based Eventing" in the IBM Tealeaf Event Manager Manual.

Default Tealeaf client framework event objects
Tealeaf provides default events and event-related objects for detecting, capturing, and storing data from
the Tealeaf client framework(s) that you deploy in your web environment. As you build your object library,
you might want to print this page and complete the gaps with the names of the objects you created.
You can also gather this information at any time by reviewing the dependent objects for any selected
object in the Event Manager.

Generated user agent attributes

This table lists and describes the attributes that are generated by Tealeaf based on user agent
information.

Hit Attribute Event Dimension Session
Attribute

Description

"Tealeaf Standard Event
Object Reference

"Tealeaf Standard
Event Object
Reference

"Tealeaf Standard
Event Object
Reference

Detection of source of
hit from mobile native
application

"Tealeaf Standard Event
Object Reference"
(=MOBILE)

"Tealeaf Standard
Event Object
Reference

Detection of Mobile
Web hit captured by
IBM Tealeaf UI
Capture

"Tealeaf Standard Event
Object Reference
(=MOBILE_APP)

"Tealeaf Standard
Event Object
Reference

Detection of Mobile
Web hit captured by a
Tealeaf mobile client
framework

Objects for XML version of UI Capture for Ajax

This table lists and describes the objects that are provided to support detection of data that is captured
by XML from the IBM Tealeaf UI Capture solution.

IBM Tealeaf CX Client Framework Data Integration Guide  61



Note: These objects were provided by Tealeaf to support the legacy XML version of IBM Tealeaf UI
Capture, in which client events were submitted in XML format. In the future, only the JSON version of IBM
Tealeaf CX UI Capture for AJAX will be supported, and these objects will be deprecated.

Hit Attribute Event Dimension Session Attribute Description

"Tealeaf
Standard Event
Object
Reference"

Count of JavaScript
alerts for the hit, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

The application
name, as reported
by IBM Tealeaf CX
UI Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

The resolution of
the browser, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

The count of client
user interface
events for the hit, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

The size of the
event message for
the hit in
characters, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

Hit count, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

"Tealeaf Standard
Event Object
Reference"

This event is
populated by a
system session
attribute that
monitors the
running total of CUI
hits for the current
session.

"Tealeaf
Standard Event
Object
Reference"

Dwell time in
milliseconds for the
hit, as reported by
IBM Tealeaf CX UI
Capture for AJAX

62  Client Framework Data Integration Guide



Hit Attribute Event Dimension Session Attribute Description

"Tealeaf
Standard Event
Object
Reference"

The count of images
that failed to load
for the hit, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

Render time in
milliseconds for the
hit, as reported by
IBM Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

Type of client user
interface hit, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

The unnormalized
URL for the client
hit, as reported by
IBM Tealeaf CX UI
Capture for AJAX

"Tealeaf
Standard Event
Object
Reference"

The normalized URL
for the client hit, as
reported by IBM
Tealeaf CX UI
Capture for AJAX

Legacy objects

This table lists and describes the objects that are maintained in Tealeaf to support legacy versions of the
Tealeaf client frameworks, including IBM Tealeaf CX UI Capture for AJAX.

Avoid using these objects, as they are likely to be deprecated in a future release.

Table 14. Legacy objects

Hit Attribute Event Dimension Session Attribute Description

"Tealeaf
Standard Event
Object
Reference" in
the IBM Tealeaf
Event Manager
Manual

(Legacy) Detection
of hit from mobile
native application

Note: This hit
attribute is used
only for legacy
versions of the
Tealeaf Logging
Frameworks. Do not
use.

IBM Tealeaf CX Client Framework Data Integration Guide  63



Table 14. Legacy objects (continued)

Hit Attribute Event Dimension Session Attribute Description

Client UI Hit
(T/F)

(Legacy) Detection
of hit from IBM
Tealeaf CX UI
Capture for AJAX
legacy versions

Note: This hit
attribute is used
only for legacy
versions of the IBM
Tealeaf CX UI
Capture for AJAX
solution. Do not
use.

Tealeaf JSON object schema reference
Tealeaf's client frameworks support a standardized messaging system for submitting user interface
events and user actions from the client to Tealeaf for capture. This JSON-based messaging system
provides an efficient means of processing these data streams on the client and within Tealeaf.

During the client capture process, Tealeaf formats captured events into JSON structures that are easily
processed by Tealeaf. The section provides information about the JSON schema that is used by Tealeaf
client frameworks, including format, features, and any differences in the supported features between
individual client frameworks.

This feature affects the clients generating logging data to a standardized format. The current clients are
the following:

• "UI Capture j2 Guide" in the IBM Tealeaf UI Capture for j2 Guide
• "UI Capture for Ajax Guide" in the IBM Tealeaf UI Capture for Ajax Guide
• "Tealeaf Android Logging Framework Reference Guide" in the IBM Tealeaf Android Logging Framework

Reference Guide
• "Tealeaf iOS Logging Framework Reference Guide" in the IBM Tealeaf iOS Logging Framework Reference

Guide

Table of Contents

Design features
The JSON schema applies to Release 8.5 and later versions of the Tealeaf client frameworks.

Extensible

The data format supports new data sources and new features in existing sources when they appear in the
capture stream. The data interchange format can be modified to accommodate the new data. This data
normalization simplifies the event and step attribute creation process.

Normalized interactions

The data format normalizes captured interactions across all client frameworks. For example, the JSON
message that indicates when the visitor changed a form field value has the same structure for each of the
supported client frameworks.

64  Client Framework Data Integration Guide



Compatibility with an earlier version

By design, the schema enables the capture across multiple versions of the client frameworks. The data in
the JSON schema is not compatible with an earlier version with Release 8.4 or earlier. Version number
information is included whenever client environmental data is submitted.

Ease of use

To economize on space and network bandwidth, JSON messages are bundled together and submitted in a
compact structure. In the native frameworks, the request payload is also compressed in compressed
format.

When the data is received by Tealeaf, it is decompressed by the PCA and inserted into the request of the
parent hit with which it is associated.

When you replay the session in Browser-Based Replay, the request of each hit that contains JSON
messages includes a reformatted easier-to-read version of the JSON messages.

I18N/L10N

UTF-8 is the supported string format because this is the format of the request buffer.

Other generalized features

JSON is the format of choice because:

• It is a native format for JavaScript engines. The Tealeaf event engine is one of them.
• It is quickly replacing XML as a de-facto standard in RIA.
• Latest browser versions have native support for JSON.

Unified header format

Identifying client framework sessions

Each client framework submits data to Tealeaf for capturing by using a consistent header format. The
format is in the following structure:

X-Tealeaf: device (platform) Lib/libversion

This header identifies the client framework and the version of the framework from which the hit was
submitted. Below, you can see examples from each of the supported client frameworks:

X-Tealeaf: device (Android) Lib/0.0.7
X-Tealeaf: device (iOS) Lib/0.1.3
X-Tealeaf: device (UIC) Lib/2008.3.6.1

In the PCA pipeline, this header is detected and rendered as a request variable. This is an example of one
of the request variables:

HTTP_X_TEALEAF=device (Android) Lib/0.0.7

Content-encoding and content-type headers

To reduce network traffic, the native client logging frameworks are compressing the request data into
compressed format before submitting them to Tealeaf for capture. For each submitted hit, its Content-
Encoding header is set to the value gzip.

IBM Tealeaf CX Client Framework Data Integration Guide  65



Before PCA Build 3502, you must configure the IBM Tealeaf CX Passive Capture Application to capture
Content-Encoding=*/gzip type.
Beginning in PCA Build 3502, this content encoding type is automatically captured for you.

Additionally, each client framework submits hits by using this content-type header:

Content-Type=application/json

If you deployed a IBM Tealeaf CX UI Capture for AJAX solution that is configured to submit user interface
data through XML, this header has different values.

Session identifiers
Depending on the type of client framework, the identifier for the session information varies.

Consider this example:

[StepAttributes]
{
    "serialNumber": 1,
    "messageVersion": "0.0.0.2",
    "sessions": [
        {
            "startTime": 1331346014596,
            "id": "C4B290A5E3EB4E28FA8CE6DCCDDE6CF5",

...

For the id value:

• In IBM Tealeaf Android SDK, the id value identifies the session. It is created automatically, or the
application user passes a unique ID that is used for sessionization. This value is the same for each hit of
a single session.

• In IBM Tealeaf iOS SDK, the id value identifies the session. It is created automatically, or the
application user passes a unique ID that is used for sessionization. This value is the same for each hit of
a single session.

This data is not submitted by IBM Tealeaf CX UI Capture for AJAX.

The id value for sessions is not a consistent value for identifying sessions. Use TLSID, which is inserted
into the request of each parent hit of a set of step attributes.

Count steps
Each step includes a count property, which identifies the number of the step for the current hit.

In the example below, you can see the count properties in each of the two steps for this hit: type=LOAD
and type=UNLOAD. For the count properties, values start at 1 and are automatically incremented.

"messages": [
        {
            "type": 2,
            "offset": 0,
            "screenviewOffset": 0,
            "count": 1,
            "fromWeb": true,
            "screenview": {
                "type": "LOAD",
                "name": "root",
                "url": "/",
                "referrer": ""
            }
        },

        {
            "type": 2,

66  Client Framework Data Integration Guide



            "offset": 40824,
            "screenviewOffset": 0,
            "count": 12,
            "fromWeb": true,
            "screenview": {
                "type": "UNLOAD",
                "name": "root",
                "url": "/",
                "referrer": ""
            }
        }

Performance measurement
Tealeaf has the ability to capture individual hits from the client enables a unique ability to monitor the
performance of your web application, the network, and the client browser.

Connection type messages

In the submitted JSON messages, connection type information is submitted as message type=3.

The connection type message is not sent by IBM Tealeaf CX UI Capture for AJAX.

For example:

{
    "offset": 0,
    "type": 3,
    "connection": {
        "statusCode": 200,
        "responseDataSize": 0,
        "initTime": 0,
        "responseTime": 0,
        "url": "http://www.example.com",
        "loadTime": 0
    }
}

From the iOS Logging Framework, some of the properties are not available for capture.

Time offsets from page load and start of session

In framework messages, time events are measured based on the page load for each page.

[StepAttributes]
{
    "serialNumber": 1,
    "messageVersion": "0.0.0.2",
    "sessions": [
        {
            "startTime": 1331346014596,
            "id": "C4B290A5E3EB4E28FA8CE6DCCDDE6CF5",

...

In this example, the value for startTime indicates the time offset in milliseconds since Jan 1, 1970 UTC
when the page was loaded from which the set of attributes was generated.

Each individual attribute has a time value in the offset property:

"messages": [
        {
            "type": 2,
            "offset": 0,
            "screenviewOffset": 0,
            "count": 1,
            "fromWeb": true,

IBM Tealeaf CX Client Framework Data Integration Guide  67



            "screenview": {
                "type": "LOAD",
                "name": "root",
                "url": "/",
                "referrer": ""
            }
        },
        {
            "type": 2,
            "offset": 40824,
            "screenviewOffset": 0,
            "count": 12,
            "fromWeb": true,
            "screenview": {
                "type": "UNLOAD",
                "name": "root",
                "url": "/",
                "referrer": ""
            }
        }

In these example messages, the offset property contains two different values:

• For the first message, it indicates that the LOAD event occurred 0 milliseconds after page load.
• For the second message, it indicates that the UNLOAD event occurred 40824 milliseconds after page

load, approximately 41 seconds after the page has loaded.

renderTime offsets

In the first message, the renderTime property indicates that the time taken to render the page required
254 milliseconds, which should match the value for the offset property for the message.

In IBM Tealeaf UI Capture, the renderTime property is reported in the Performance message in
milliseconds.

Dwell time

Dwell time is applicable for control types where the visitor can spend time within the control. For
example, when the visitor clicks in a text input control, the dwell time measures the time in milliseconds
between when the control receives focus and when the focus switches to a different control.

• Controls that do not support a visitor spending time in them do not contain the dwell time property.
• From IBM Tealeaf UI Capture, dwell time is not provided for change events that are not associated with

a blur event. For example, if a user clicks several times in a row on a check box, no dwell time value is
provided.

In this example, the dwell property measures this value in milliseconds for a textbox.

{
    "type": 4,
    "offset": 8465,
    "count": 8,
    "event": {
        "type": "change"
    },
    "target": {
        "id": "billing:lastname",
        "idType": -1,
        "type": "INPUT",
        "subType": "text",
        "name": "billing[lastname]",
        "dwell": 5620,
        "currState": {
            "value": "asf"
        }
    }
}

68  Client Framework Data Integration Guide



Link image targets

UI Capture j2 can capture the content of the href target element if the element:

• Is a link
• Has a parent that is a link (isParentLink=true).

In this example, the href value records the link destination. In this case, the link is listed for the parent
object, as isParentLink is set to true.

{
    "type": 4,
    "offset": 13456,
    "screenviewOffset": 13455,
    "count": 9,
    "fromWeb": true,
    "target": {
        "id": "logo",
        "idType": -1,
        "name": "",
        "tlType": "IMG",
        "type": "IMG",
        "subType": "",
        "position": {
            "width": 18,
            "height": 20,
            "relXY": "0.6,0.5"
        },
        "currState": {
            "href": "http://example.com/mypage.html#logo_link"
        },
        "isParentLink": true,
        "visitedCount": 1
    },
    "event": {
        "tlEvent": "click",
        "type": "click"
    },
    "focusInOffset": 3207
},

Previous state and current state tracking
Each control object submits information to identify its previous state before the change to the current
state.

If a field is empty, no value is submitted for it. As a result, no value for currState is recorded.

"target": {
    "position": {
        "y": 0,
        "height": 100,
        "width": 200,
        "x": 0
    },
    "id": "nameTextBox",
    "dwell": 232313,
        "noFilled": 2,
    "type": "MyEditText",
    "prevState": {
         "text": ""
    },
    "currState": {
                 "text": "MyName"
    },
    "subType": "EditText",
    "tlType": "textBox"
},"screenViewOffset": 1253,"offset": 67676876,"screenViewOffset": 4556,"type": 
    4,"event": {
    "type": "click",
    "subType": "subclick"
}

IBM Tealeaf CX Client Framework Data Integration Guide  69



Exceptions
The Tealeaf client frameworks capture exceptions that are recorded in the client application and submits
them in a specific message type (type=6).

Mobile native client frameworks

When a stack trace is detected on the client application, a JSON message of type=6 is submitted,
including the entire stack trace of the exception in the stackTrace property, as in this divide-by-zero
example:

{"offset": 0,"type": 6,"exception": {
    "description": "divide by zero",
    "stackTrace": "java.lang.ArithmeticException: divide by zero\n\tat 
com.tl.uic.test.model.JSONTest.testException(JSONTest.java:391)\n\tat 
java.lang.reflect.Method.invokeNative(Native Method)\n\tat 
java.lang.reflect.Method.invoke(Method.java:507)\n\tat 
android.test.InstrumentationTestCase.runMethod(InstrumentationTestCase.java:204
)\n\tat 
android.test.InstrumentationTestCase.runTest(InstrumentationTestCase.java:194)\
n\tat 
android.test.ActivityInstrumentationTestCase2.runTest(ActivityInstrumentationTe
stCase2.java:186)\n\tat 
junit.framework.TestCase.runBare(TestCase.java:127)\n\tat 
junit.framework.TestResult$1.protect(TestResult.java:106)\n\tat 
junit.framework.TestResult.runProtected(TestResult.java:124)\n\tat 
junit.framework.TestResult.run(TestResult.java:109)\n\tat 
junit.framework.TestCase.run(TestCase.java:118)\n\tat 
android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:169)\n\tat 
android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:154)\n\tat 
android.test.InstrumentationTestRunner.onStart(InstrumentationTestRunner.java:5
29)\n\tat 
android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:1448
)\n",
    "name": "java.lang.ArithmeticException"
}

Some stack trace messages cannot be captured from the iOS Logging Framework.

Form field monitoring
Tealeaf client frameworks provide superior insight into specific activities on the form fields of each page
of your web application. Once per hit, the Tealeaf client framework submits information about the form
fields that were left blank or were unchanged, as well as information about which fields were changed
multiple times. You can also monitor how long the visitor spent in an individual form field.

Message on form fields that were unchanged

To monitor form fields that were not changed, the Tealeaf client frameworks submit a message of
type=4. This message is for a synthetic event of type=unchanged. This synthetic event message is
submitted whenever the control value for an object on logical page unload is the same value as detected
during logical page load.

Reported along with this information is the set of form fields on the hit that were not changed, as
described in the target set of properties in this example:

{
    "type": 4,
    "offset": 5469,
    "count": 7,
    "event": {
        "type": "unchanged"
    },
    "target": {
        "id": "cb1",
        "idType": -1,
        "type": "INPUT",
        "name": "cb1",
        "subType": "checkbox",

70  Client Framework Data Integration Guide



        "visitedCount": 0,
        "currState": {
            "checked": false,
            "value": "red"
        }
    }
}

This message is submitted when an ScreenView is unloaded, which might not correspond to when the
page is unloaded. If the ScreenView can be unloaded multiple times per page in your application, the
unchanged message might be reported multiple times, which might affect reporting.

Show fields completed more than once

Tealeaf client frameworks can also monitor the form fields that were visited multiple times on a single
page. In this example, the visitedCount property is inserted into the target message, and its value (2)
indicates the number of times the form field (id=nameTextBox) was visited:

{"target": {
    "position": {
        "y": 0,
        "height": 100,
        "width": 200,
        "x": 0
    },
    "id": "nameTextBox",
    "dwell": 232313,
    "visitedCount": 2,
    "type": "MyEditText",
    "prevState": {
        "text": ""
    },
    "currState": {
         "text": "MyName"
    } ,
    "subType": "EditText",
    "tlType": "textBox"
},"offset": 67676876,"screenViewOffset": 4556,"type": 4,"event": {
    "type": "click",
    "subType": "subclick"
}
}

Message on form fields that were left blank

For each form field control that was not entered, the Tealeaf client frameworks submit a message that
indicate that the form field was left blank.

• This message is submitted when the user selected the field but did not enter any value.
• The visitedCount for this message is a value greater than 0.

ScreenView features
A ScreenView is defined as a change in state on the page. For example, on a web page that uses tabs to
identify steps in a process, each tab can be defined as a screenview.

What is a screenview

The definition of a screenview is specified by the application developer. The Tealeaf client frameworks
submit events that are triggered based on changes to the hash value in the URL. These events are
categorized as the hashchange event.

Each client framework records the screenview message when it occurs. A screenview can be triggered by
the application

1. Explicitly starting an API that notifies the Tealeaf library that a new screenview is loaded.

IBM Tealeaf CX Client Framework Data Integration Guide  71



2. Triggering a hashchange on the page URL.

In this case, the Tealeaf library must be configured to track hashchange events and to use them to infer
screenview load.

This is an example screenview message from a checkout page:

{
    "type": 2,
    "offset": 4672,
    "screenviewOffset": 0,
    "count": 5,
    "fromWeb": true,
    "screenview": {
        "type": "LOAD",
        "name": "billing",
        "url": "/index.php/checkout/onepage/",
        "referrer": "CheckoutMethod"
    }
}

When the ScreenView changes, the client reset the count of steps and assume that the content displayed
in the client application was changed to display a new view or screen.

LOAD type

The LOAD type is structured as follows:

{
    "type": 2,
    "offset": 0,
    "screenviewOffset": 0,
    "count": 1,
    "fromWeb": true,
    "screenview": {
        "type": "LOAD",
        "name": "root",
        "url": "/",
        "referrer": ""
    }
}

Among the properties, these values are present for the LOAD message:

• type value is LOAD.
• name value is the logical page name.
• url value is the relative path from the root for the page URL.
• referrer value is the referrer to the current page.

UNLOAD type

The UNLOAD type is structured as follows:

{
                    "type": 2,
                    "offset": 40824,
                    "screenviewOffset": 0,
                    "count": 12,
                    "fromWeb": true,
                    "screenview": {
                        "type": "UNLOAD",
                        "name": "root",
                        "url": "/",
                        "referrer": ""
                    }
                }

72  Client Framework Data Integration Guide



Among the properties, these values are present for the UNLOAD message:

• type value is UNLOAD.
• name value is the logical page name.
• url value is the relative path from the root for the page URL.
• referrer value is the referrer to the current page.

Track objects unchanged within a given screenView

When the ScreenView changes, the client frameworks submit a message containing the list of objects on
the page that were not changed from their initial values.

JSON data message format
For compactness of the format, fields are stored as array elements, and optional fields are stored in
objects. A message packet consists of a global header followed by one or more message types. Each
message packet contains a global header that consists of an array that contains the message version and
a message serial number. The header is followed by an array of session messages.

There are two types of messages:

• Session
• Client environment

Message format schema

This example of the JSON message format schema:

{
    "messageVersion": {
        "title": "Json message version",
        "type": "string",
        "required": true
    },
    "serialNumber": {
        "title": "Number of packet of MessageFormat sent to server",
        "type": "integer",
        "required": true
    },
    "clientEnvironment": {
        "title": "Client environment",
        "type": "$ref": "ClientEnvironment",
        "required": true
    },
    "sessions": {
        "description": "We simplified this to an array of one session.",
        "type": "array",
        "additionalItems": {
            {
                "description": "Session with list of messages",
                "type": "array",
                "item": {
                    { "$ref" : "Session" },
                    "required": true,
                }
            },
        },
    },
    "additionalProperties" : false
    }
}

IBM Tealeaf CX Client Framework Data Integration Guide  73



Message format example

This example contains a message header and the client environment information that is submitted by the
client framework from an Android native application:

{
    "serialNumber": 0,
    "messageVersion": "0.0.0.1",
    "sessions": [
        {
            "startTime": 1328311295574,
            "id": "945202AC4E93104E05EDADE1F6059B97",
            "messages": [
                {
                    "offset": 124,
                    "screenViewOffset": 4556,
                    "type": 2,
                    "logicalPageName": "HomeActivity"
                }
            ]
        }
      ],
    "clientEnvironment": {
        "mobileEnvironment": {
            "android": {
                "keyboardType": "QWERTY",
                "brand": "generic",
                "fingerPrint":       "generic/sdk/generic/
                :2.2/FRF91/43546:eng/test-keys"
            },
            "totalMemory": 63422464,
            "totalStorage": 12288,
            "orientationType": "PORTRAIT",
            "appVersion": "1.0.5",
            "manufacturer": "unknown",
            "userId": "android-build",
            "locale": "English (United States)",
            "deviceModel": "sdk",
            "language": "English"
        },
        "width": 0,
        "height": 0,
        "osVersion": "2.2"
    }
}

Message format

Each message packet contains a global header consisting of an array containing the message version and
a message serial number. The header is followed by an array of session messages.

Session messages
The Session messages in a JSON packet contain message type objects to be posted to server.

Session messages schema
This is the schema for Session messages.

{
    "id": {
        "title": "Session id",
        "type": "string",
        "required": true
    },
    "startTime": {
        "title": "Session start time in ticks",
        "type": "number",
        "required": true
    },
    "messages": {
        "description": "List of messages",
        "type": "array",
        "additionalItems": {
            {

74  Client Framework Data Integration Guide



                "description": "List of messages",
                "type": "array",
                "item": {
                    { "$ref" : "Client State" },
                    { "$ref" : "ScreenView" },
                    { "$ref" : "Connection" },
                    { "$ref" : "Control" },
                    { "$ref" : "Custom Event" },
                    { "$ref" : "Exception" },
                    "required": true,
                }
            },
        },
    },
   "additionalProperties" : false
}

Session messages example
This example shows a Session message.

{
    "startTime": 1328311295574,
    "id": "945202AC4E93104E05EDADE1F6059B97",
    "messages": [
        {
            "offset": 124,
            "screenViewOffset": 4556,
            "type": 2,
            "logicalPageName": "HomeActivity"
        }
    ]
}

Client environment data
Client environment data contains session-level information that is sent during all the messages sent to
the server. It is part of the message format. IBM TealeafCX UI Capture for AJAX does not send
clientEnvironment messages.

Client environment schema
This is the client environment message schema.

{
    "$ref" : "MessageHeader",
    "osVersion": { 
        "title": "Operating system version",
        "type": "string",
        "required": false for UIC, true for native frameworks
    },
   "orientation": { 
        "title": "Initial session orientation of the screen",
        "type": "integer which can be 0, 90, 180 or -90",
        "required": true for iOS and Android. UIC has an orientation 
in webEnvironment.
    }, 
    "height": { 
        "title": "Initial session height of display/viewport divided 
by pixel density",
        "type": "integer",
        "required": true
    },
    "width": { 
        "title": "Initial session width of display/viewport divided 
by pixel density",
        "type": "integer",
        "required": true
    },   
   "deviceHeight": { 
        "title": "Initial session device height of display/viewport",
        "type": "integer",
        "required": true
    },

IBM Tealeaf CX Client Framework Data Integration Guide  75



    "deviceWidth": { 
        "title": "Initial session device width of display/viewport",
        "type": "integer",
        "required": true
    },
    "mobileEnvironment": {
        "description": "Logical page being loaded",
        "type": "object",
        "properties": {     
            "appName": { 
                "title": "Application name",
                "type": "string",
                "required": true
            },
            "android": {
                "description": "Current state in an Android device",
                "type": "object",
                "properties": {     
                    "brand": { 
                        "title": "The brand (e.g., carrier) the software 
is customized for, if any",
                        "type": "string",
                        "required": true
                    },
                    "fingerPrint": { 
                        "title": "A string that uniquely identifies this build",
                        "type": "string",
                        "required": true
                    },
                    "keyboardType": { 
                        "title": "Keyboard type",
                        "type": [ {
                            "enum": [0],
                            description: "TWELVE_KEYS"
                            },
                            "enum": [1],
                            description: "NO_KEYS"
                            },
                            "enum": [2],
                            description: "QWERTY"
                            },
                            "enum": [3],
                            description: "UNDEFINED"
                            }],
                        "required": true
                    },
                }
            },
            "totalMemory": { 
                "title": "Total memory in MBytes of device",
                "type": "number",
                "required": true
            },
            "totalStorage": { 
                "title": "Total storage in MBytes of device",
                "type": "number",
                "required": true
            },
            "orientationType": { 
                "title": "Orientation type of device",
                "type": [ {
                            "LANDSCAPE"
                            description: "LANDSCAPE"
                            },
                            "PORTRAIT",
                            description: "PORTRAIT"
                            },
                            "SQUARE",
                            description: "SQUARE"
                            },
                            "UNDEFINED",
                            description: "UNDEFINED"
                            }],
                "required": true
            },
            "appVersion": { 
                "title": "Version of application",
                "type": "string",
                "required": true
            },
            "manufacturer": { 
                "title": "Manufacturer of device",

76  Client Framework Data Integration Guide



                "type": "string",
                "required": true
            },
            "userId": { 
                "title": "User of device",
                "type": "string",
                "required": true
            },
            "locale": { 
                "title": "The user's preferred locale",
                "type": "string",
                "required": true
            },
            "deviceModel": { 
                "title": "Device model",
                "type": "string",
                "required": true
            },
            "language": { 
                "title": "Device's language",
                "type": "string",
                "required": true
            }
        },
        "additionalProperties" : false
    }, 
    “webEnvironment": {
        "description": "Web page being loaded",
        "type": "object",
        "properties": {     
            "libVersion": { 
                "title": "Library version,
                "type": "string",
                "required": true for UIC
            },
            "screen": {
                "description": "Display of the web content",
                "type": "object",
                "properties": {     
                    "orientation": { 
                        "title": "Initial session orientation of the screen",
                        "type": "integer which can be 0, 90, 180 or -90",
                        "required": true for UIC. iOS and Android has it on 
outer object.
                    },
                    "orientationMode": { 
                        "title": "To indicate orientation mode.”,
                        "type": "string which can be Portrait or Landscape",
                        "required": true for UIC
                    }
                }
            },
            "page": { 
                "title": "Url of the page",
                "type": "string",
                "required": true for UIC
            },

            "referrer": {

                "title": "Referrer URL (if any) of the page.",
                "type": "string",
                "required": true for UIC

            }     
        },
        "additionalProperties" : false
    }
}

Client environment example
These examples contain a client environment messages that are submitted from applications.

This example shows the clientEnvironment message for UIC:

clientEnvironment" : {
    "webEnvironment" : {

IBM Tealeaf CX Client Framework Data Integration Guide  77



        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {
            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,
            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }
    }

}

This example shows the clientEnvironment message for Android and iOS:

"clientEnvironment": {
                "orientation": 90,
                "height": 720,
                "osVersion": "4.2.2",
                "pixelDensity": 2,
                "width": 1196,
                "deviceHeight": 360,
                "osType": "Android" or "iOS"
                "deviceWidth": 598
}

JSON message type schemas and examples
JSON messages are categorized by type for processing. Tealeaf supports 12 JSON message types.

Message header properties

All messages contain message header properties consisting of two properties that contain the message
type and the time that is offset from the start of the session in milliseconds. All time measurements in the
JSON object schema are in milliseconds.

Message list

This table lists and describes the supported JSON message types:

Table 15. Schema by Message Type

Type Message Type Description

1 “Client state (Type 1) messages” on page
80

Any object that shows the current state of
client.

2 “ScreenView (Type 2) messages” on page
83

Any message that indicates changes in
view on the "screen". The "screen" is the
page, view, or activity where the visitor is in
the application.

3 “Connections (Type 3) messages” on
page 84

Any request or response that the
application performs during capture.

4 “Control (Type 4) messages” on page 85 User interface control that fires an event to
which Tealeaf listens for capture.

5 “Custom Event (Type 5) messages” on
page 88

Any custom log event from any location in
application.

6 “Exception (Type 6) messages” on page
88

Any exception that the application can
throw.

78  Client Framework Data Integration Guide



Table 15. Schema by Message Type (continued)

Type Message Type Description

7 “Performance (Type 7) messages” on
page 90

Performance data from a browser.

8 “Web Storage (Type 8) messages” on
page 91

Any object that contains information about
local storage information on the browser.

9 “Overstat Hover Event (Type 9)
messages” on page 91

Any object that contains information about
mouse hover and hover-to-click activity.

10 “Layout (Type 10) messages” on page
92

Any message that shows the current
display layout of a native page.

11 “Gesture (Type 11) messages” on page
94

Any message that shows a gesture that
fires a higher touch event that Tealeaf
listens to for capture.

12 “DOM Capture (Type 12) message
example” on page 103

Any object that contains serialized HTML
data (DOM snapshot) of the page.

13 “GeoLocation (Type 13) messages” on
page 105

Messages that contain the geolocation
information about the device.

Message header properties
All messages contain message header properties consisting of two properties that contain the message
type and the time that is offset from the start of the session in milliseconds.

All time measurements in the JSON object schema are in milliseconds.

Message header properties schema
This example shows the schema for the JSON message headers.

"offset": {
    "title": "Milliseconds offset from start of stream",
    "type": "integer",
    "required": true
},"screenViewOffset": {
    "title": "Milliseconds offset from start of ScreenView",
    "type": "integer",
    "required": true
},"count": {
    "title": "The number of the message being sent",
    "type": "integer",
    "required": only used for UIC
},"fromWeb": { 
    "title": "Used to identify if it came from Web or Native application",
    "type": "boolean",
    "required": true
},"webviewId": {             
    "title": "Used to identify which webview it came from. This is only used 

          when fromWeb is true and it is a hybrid application ",    
    "type":"string",    
    "required": true only when fromWeb is true and it is a hybrid application
},"type": {
    "title": "Message header type",
    "type": [ {
        "enum": [1],
        description: "CLIENT_STATE"
        },
        "enum": [2],
        description: "APPLICATION_CONTEXT"
        }],
        "enum": [3],
        description: "CONNECTION"
        },
        "enum": [4],
        description: "CONTROL"

IBM Tealeaf CX Client Framework Data Integration Guide  79



        },
        "enum": [5],
        description: "CUSTOM_EVENT"
        }],
        "enum": [6],
        description: "EXCEPTION"
        }],
    "required": true
},

Message header properties example

The following example message header is taken from an exception message type.

{
    "offset": 0,
    "screenViewOffset": 4556,
    "type": 6,
    "exception": {
        "description": "divide by zero",
        "name": "class java.lang.ArithmeticException"
      "stackTrace": "java.lang.ArithmeticException: divide by zero\n\tat   
com.tl.uic.test.model.JSONTest.testException(JSONTest.java:391)\n\tat 
java.lang.reflect.Method.invokeNative(Native Method)\n\tat 
java.lang.reflect.Method.invoke(Method.java:507)\n\tat 
android.test.InstrumentationTestCase.runMethod(InstrumentationTestCase.java:204
)\n\tat 
android.test.InstrumentationTestCase.runTest(InstrumentationTestCase.java:194)\
n\tat 
android.test.ActivityInstrumentationTestCase2.runTest(ActivityInstrumentationTe
stCase2.java:186)\n\tat 
junit.framework.TestCase.runBare(TestCase.java:127)\n\tat 
junit.framework.TestResult$1.protect(TestResult.java:106)\n\tat 
junit.framework.TestResult.runProtected(TestResult.java:124)\n\tat 
junit.framework.TestResult.run(TestResult.java:109)\n\tat 
junit.framework.TestCase.run(TestCase.java:118)\n\tat 
android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:169)\n\tat 
android.test.AndroidTestRunner.runTest(AndroidTestRunner.java:154)\n\tat 
android.test.InstrumentationTestRunner.onStart(InstrumentationTestRunner.java:5
29)\n\tat 
android.app.Instrumentation$InstrumentationThread.run(Instrumentation.java:1448
)\n",
    }
}

Client state (Type 1) messages
Client state messages are delivered on a schedule basis or on changes to the environment state on the
client. These are Type 1 JSON messages.

Note: Replay of client state messages is not supported, except for scroll events. Replay of scroll events
that are captured from the client is supported for mobile sessions (web, mobile web and hybrid) only in
BBR only. Replay of scroll events are not supported for DOM capture. See Search and Replay for Mobile
Web.

Client State (Type 1) message schema
This is the schema for the Client State (Type 1) messages.

{
    "$ref" : "MessageHeader",
    "mobileState": {
        "description": "Logical page being loaded for iOS and Android",
        "type": "object",
        "properties": {
            "orientation": {
                "title": "Current orientation of the device",
                "type": "integer",
                "required": true
            },
            "freeStorage": {
                "title": "Amount of available storage in Mbytes",
                "type": "number",

80  Client Framework Data Integration Guide



                "required": true
            },
            "androidState": {
                "description": "Current state in an Android device",
                "type": "object",
                "properties": {
                    "keyboardState": {
                        "title": "Current keyboard state",
                        "type": [ {
                            "enum": [0],
                            description: "Keyboard not hidden"
                            },
                            "enum": [1],
                            description: "Keyboard hidden"
                            },
                            "enum": [2],
                            description: "Undefined"
                            }],
                        "required": true
                    },
                }
            },
            "battery": {
                "title": "Battery level from 0 to 100",
                "type": "number",
                "required": true
            },
            "freeMemory": {
                "title": "Amount of available memory in Mbytes",
                "type": "number",
                "required": true
            },
            "connectionType": {
                "title": "Current connection type",
                "type": "string",
                "required": true
            },
            "carrier": {
                "title": "Carrier of device",
                "type": "string",
                "required": true
            },
            "networkReachability": {
                "title": "Current network reachability",
                "type": [ {
                    "enum": [0],
                    description: "Unknown"
                    },
                    "enum": [1],
                    description: "NotReachable"
                    },
                    "enum": [2],
                    description: "ReachableViaWIFI"
                    },
                    "enum": [3],
                    description: "ReachableViaWWAN"
                }],
                "required": true
            },
            "ip": {
                "title": "Ip address of device",
                "type": "string",
                "required": true
            }
        },
        "additionalProperties" : false
        "clientState": {
        "description": "Logical web page being loaded for UIC",
        "type": "object",
        "properties": {     
            "pageWidth": { 
                "title": "Width of the document of the web page",
                "type": "integer",
                "required": true
            },
            "pageHeight": { 
                "title": "Height of the document of the web page",
                "type": "integer",
                "required": true
            },
            "viewPortWidth": { 
                "title": "Width of viewport",

IBM Tealeaf CX Client Framework Data Integration Guide  81



                "type": "integer",
                "required": true
            },
            "viewPortHeight": { 
                "title": "Height of viewport",
                "type": "integer",
                "required": true
            },
            "viewPortX": { 
                "title": "x position of scrollbar on viewport",
                "type": "integer",
                "required": true
            },
            "viewPortY": { 
                "title": "y position of scrollbar on viewport",
                "type": "integer",
                "required": true
            },
            "event": { 
                "title": "event that triggered the client state",
                "type": "string",
                "required": true
            },
                    "deviceScale": {
                        "title": "scaling factor for fitting
                        page into window for replay",
                        "type": "integer",
                        "required": true
                    },
                    "viewTime": { 
                "title": "time in milliseconds user was on the event triggered",
                "type": "integer",
                "required": true
            },
            "viewPortXStart": { 
                "title": "initial start x position of scrollbar on viewport",
                "type": "integer",
                "required": only used in scroll events
            },
            "viewPortYStart": { 
                "title": "initial start y position of scrollbar on viewport",
                "type": "integer",
                "required": only used in scroll events
            },
        },
        "additionalProperties" : false
    }
}

Client State (Type 1) message example
This is an example of a Client State (Type 1) message. This example comes from an Android native
application.

{
    "offset": 667,
    "screenViewOffset": 4556,
    "type": 1,
    "mobileState": {
        "orientation": 0,
        "freeStorage": 33972224,
        "androidState": {
            "keyboardState": 0
        },
        "battery": 50,
        "freeMemory": 64630784,
        "connectionType": "UMTS",
        "carrier": "Android",
        "networkReachability": "ReachableViaWWAN",
        "ip": "0.0.0.0"
    }
}

82  Client Framework Data Integration Guide



ScreenView (Type 2) messages
ScreenView messages indicate steps in a visitor's experience with your application. These steps can be
logical page views in a web application, screen changes in a mobile application, or steps in a business
process. ScreenView messages are Type 2 JSON messages.

In Release 8.5 and earlier, these messages were called Application Context messages.

ScreenView (Type 2) message schema
This is the schema for the ScreenView (Type 2) JSON messages.

{
    "$ref" : "MessageHeader",
    "dcid": { 
        "title": "Unique identifier that is used to match the corresponding 
DOM Capture message associated with this 
message.",
        "type": "string",
        "required": false
    },
    "screenview/context": {
        "description": "Logical page being loaded or unloaded",
        "type": "object",
        "properties": {     
            "type": { 
                "title": "Type of application context - LOAD or UNLOAD",
                "type": "string",
                "required": true
            },
            "name": { 
                "title": "Name of the logical page. This is given by customer 
or it uses name of the class used 
by the page.",
                "type": "string",
                "required": true
            },
            "url": { 
                "title": "URL path of the logical page",
                "type": "string",
                "required": false only used in UIC
            },
            "host": { 
                "title": "URL Host of the logical page",
                "type": "string",
                "required": false only used in UIC
            },
            "referrer": { 
                "title": "Previous logical page loaded, only used in LOAD",
                "type": "string",
                "required": false
            },
            "referrerUrl": { 
                "title": "Url of the previous logical page loaded",
                "type": "string",
                "required": false, not used in UIC
            }   
        },
        "additionalProperties" : false,
        "required": false
    }
}

ScreenView (Type 2) message example
This is an example of a ScreenView (Type 2) message. This example contains three ScreenView
messages, indicating page load and page unload events.

{
    "offset": 124,
    "contextOffset": 4556,
    "type": 2,
    "context": { 
            "type": "LOAD", 
            "name": "PAGE 2", 
            "referrer": "PAGE 1" 
        } 

IBM Tealeaf CX Client Framework Data Integration Guide  83



}
 
{ 
    "type": 2, 
    "offset": 19216 
 
    "context": { 
        "type": "UNLOAD", 
        "name": "PAGE 2" 
    } 
} 
 
{
    "type": 2,
    "offset": 2144,
    "contextOffset": 0,
    "count": 9,
    "fromWeb": true,

    "webviewId": "webview1",
    "screenview": {
        "type": "LOAD",
        "name": "Ford",
        "url": "/dynamic/ford.aspx",

        "host": "http://www.cartest.com",
        "referrer": "BMW",
        "referrerUrl": "/dynamic/bmw.aspx"
    }
}

Connections (Type 3) messages
Connection messages provide information about how requests or responses are managed by the client
application. Connections messages are Type 3 JSON messages.

Connections (Type 3) messages schema
This is the schema for Connections (Type 3) JSON messages.

{
    "$ref" : "MessageHeader",
    "connection": {
        "description": "Connection in application",
        "type": "object",
        "properties": {
            "statusCode": {
                "title": "Status code of connection",
                "type": "integer",
                "required": true
            },
            "responseDataSize": {
                "title": "Response data size",
                "type": "number",
                "required": true
            },
            "initTime": {
                "title": "Initial time of connection",
                "type": "number",
                "required": true
            },
            "responseTime": {
                "title": "Response time of connection",
                "type": "number",
                "required": true
            },
            "url": {
                "title": "Url of connection",
                "type": "string",
                "required": true
            },
            "loadTime": {
                "title": "Load time from connection",
                "type": "number",
                "required": true
            }
        },
        "additionalProperties" : false

84  Client Framework Data Integration Guide



    }
}

Connections (Type 3) message example
This example shows the Connections (Type 3) JSON message.

{
     "offset": 03829,
        "type": 3,
        "screenViewOffset": 45560,
    "type": 3,
    "connection": {
         "statusCode": 200,
             "responseDataSize": 0272,
         "initTime": 01333669478556,
             "responseTime": 02237,
             "url": "http://google.com",
             "url": "/store/js/tealeaf/
                     TeaLeafTarget.php??width=540&height=960&orientation=0",
             "loadTime": 0
    }
}

Control (Type 4) messages
Control messages are used to log user action and behavior. These messages consist of a control identifier
and a value that is returned by the identified control. Control messages are Type 4 JSON messages.

The control identifiers are mapped to specific controls for the submitting client framework. The value can
be a number, a text string, or structured data.

Control (Type 4) message schema
This is the schema for Control (Type 4) messages.

The X and Y properties are not present in the UI Capture frameworks.

{
    "$ref" : "MessageHeader",
      "offset": {
        "title": "Milliseconds offset from offset 
                      for when focusIn of text fields occur",
        "type": "integer",
        "required": true
      },
    "target": {
        "description": "Control being logged",
        "type": "object",
        "properties": {
            "position": {
                "description": "Position of control being logged",
                "type": "object",
                "properties": {
                    "x": {
                        "title": "X of the control",
                        "type": "integer",
                        "required": true
                    },
                    "y": {
                        "title": "Y of the control",
                        "type": "integer",
                        "required": true
                    },
                    "height": {
                        "title": "height of control",
                        "type": "integer",
                        "required": true
                    },
                    "width": {
                        "title": "width of control",
                        "type": "integer",
                        "required": true
                    },

IBM Tealeaf CX Client Framework Data Integration Guide  85



                    "relXY": { 
                        "title": "relative X & Y ratio that 
                                              can be from 0 to 1 with a 
                                              default value of 0.5",
                        "type": "string",
                        "required": true for click events
                    },
                },
                "additionalProperties" : false
            }
            "id": {
                "title": "Id/Name/Tag of control",
                "type": "string",
                "required": true
            },
            idType": { 
                "title": "Indicates what id is based on: Native id (e.g. HTML 'id' 
attribute):  -1,
    xPath: -2, or Custom attribute for UIC and 
Hashcode value for  Native: -3, or xPath for Native iOS/Android: -4",
                "type": "integer",
                "required": true
            },
            "dwell": {
                "title": "Dwell time of control",
                "type": "integer value that is in milliseconds",
                "required": false
            },
             "visitedCount": {
                "title": "Number of times a form control has 
                                  been visited to be filled  by user.",
                "type": "integer",
                "required": false
            },
            "isParentLink": { 
                "title": "To indicate if control a A type tag",
                "type": "boolean",
                "required": false only in UIC for usability
            },
            "name": { 
                "title": "Name of control",
                "type": "string",
                "required": true in UIC
            },
            "type": {
                "title": "Type of control",
                "type": "string",
                "required": true
            },
            "subType": {
                "title": "SubType of control",
                "type": "string",
                "required": true
            },
                    "tlType": {
                "title": "tlType of control that normalizes 
                                  the control type for eventing",
                "type": "string",
                "required": true
            },
                    "prevState": {
                "title": "Previous state of control",
                "type": "object",
                "required": true,
                            "properties": {
                    "?": { // Could be any variable name given by developer
                        "title": "Additional data in string format",
                        "type": "string",
                        "required": false
                    }
            },
            "currState": {
                "title": "Current state of control",
                "type": "object",
                "required": true,
                "properties": {
                    "?": { // Could be any variable name given by developer
                        "title": "Additional data in string format",
                        "type": "string",
                        "required": false
                    }
            }

86  Client Framework Data Integration Guide



        },
        "additionalProperties" : false
    }
    "event": {
        "description": "Event from control",
        "type": "object",
        "properties": {
                   "tlEvent": {
                "title": "Tealeaf type of event",
                "type": "string",
                "required": true
            },
            "type": {
                "title": "Type of event",
                "type": "string",
                "required": true
            },
            "subType": {
                "title": "Subtype of event",
                "type": "string",
                "required": true
            }
        },
        "additionalProperties" : false
    }
}

Control (Type 4) message example
This is an example of a Control (Type 4) message.

This example shows a control with an idType of XPATH, which means no id was assigned to the control
in the application so Tealeaf traversed the layout and created an XPATH id for the control:,

{                    
    "screenviewOffset":380,                    
    "target":{                        
        "id":"[KV,0]",                        
        "position":{                            
            "y":331,                            
            "x":0,
            "width":320,
            "height":202                     
            },                        
        "idType":"-4",                        
            "currState":{                          
                "y":"0",                            
                "x":"0"                       
                },                        
        "style":{ 
            "paddingTop":2,
            "textBGAlphaColor":255,                            
            "bgAlphaColor":255,                            
            "paddingBottom":0,                            
            "paddingLeft":0,                            
            "hidden":false,                            
            "paddingRight":0                       
            },                        
        "subType":"View",                        
        "type":"KeyboardView",                        
        "tlType":"keyboard"                   
       },                    
    "type":4,                    
    "offset":728,                    
    "count":3,                    
    "fromWeb":false,                    
    "event":{                        
        "type":"UIKeyboardDidShowNotification",                       
        "tlEvent": "kbDisplayed"                   
        }                
},

IBM Tealeaf CX Client Framework Data Integration Guide  87



Custom Event (Type 5) messages
The Custom Event messages are used to custom log any event from any place in the application. Custom
Event messages are Type 5 JSON messages.

Custom Event (Type 5) message schema
This is the schema for the Custom Event (Type 5) messages.

The only required field is the name of the custom event (name value). Application-specific code must be
created to process this logged message type.

{
    "$ref" : "MessageHeader",
    "customEvent": {
        "description": "Custom event message",
        "type": "object",
        "properties": {     
            "name": { 
                "title": "Exception name/type",
                "type": "string",
                "required": true
            },
                        "data": "Additional properties given by developer",
                "type": "object",
                "required": truefalse,
                "properties": {     
                    "?": { // Could be any variable name given by developer
                        "title": "Additional data in string format",
                        "type": "string",
                        "required": false
                    }        
                        },
        },
        "additionalProperties" : false
    }
}

Custom Event (Type 5) message example
This is an example of a Custom Event (Type 5) message. This custom event message provides the name
of the custom event (MyEvent_1) and several custom properties in the data section.

{
     "type": 5,
        "offset": 17981,
    "screenViewOffset": 4556,
    "customEvent": {
        "name": "MyEvent_1",
        "data": {
            "Foo": "Bar",
            "validationError": "Invalid zipcode.",
            "ajaxPerformance": 56734
        }
    }
}

Exception (Type 6) messages
The exceptions messages type records the name and description of an exception occurring on the client
application. Exception messages are Type 6 JSON messages.

Exception (Type 6) message schema
This is the schema for the Exception (Type 6) messages.

{
    "$ref" : "MessageHeader",
    "exception": {
        "description": "Exception description message",
        "type": "object",
        "properties": {                

88  Client Framework Data Integration Guide



            "description": {
                "title": "Exception message from api call",
                "type": "string",
                "required": true
            },                
            "name": { 
                "title": "Exception name/type",
                "type": "string",
                "required": true, not for UIC
            },
            "stackTrace": { 
                "title": "Exception stacktrace given by framework",
                "type": "string",
                "required": true, not for UIC
            },
            "url": { 
                "title": "Url where exception ocurred",
                "type": "string",
                "required": true for UIC
            },
           "fileName": { 
                "title": "File name where exception ocurred",
                "type": "string",
                "required": true for iOS, not for UIC
            },
            "line": { 
                "title": "Line number where eception occurred.",
                "type": "string",
                "required": true for UIC and iOS
            },
           "unhandled": { 
                "title": "Whether exception had a try catch around it.",
                "type": "boolean",
                "required": true, not for UIC
            },
           "data": { 
                "title": "User defined data being passed with 
user info from system",
                "type": "object",
                "required": true for iOS, not for UIC
    "properties": {

                "userInfo": {
                            "type": "object",

    "title": "OS information from error or exception",

                            "required": iOS optional (data is JSON 
serializable or not)
                        },
                        "message": {
                            "type": "string",

                            "title":"User supplied message on error event",

                            "required":iOS optional (not on exceptions 
required on error)
                        }
                    },
            },
        },
        "additionalProperties" : false
    }
}

Exception (Type 6) message example
This is an example of an Exception (Type 6) message. This example exception indicates an attempt to
read a property named 'type' of a variable or value which is undefined.

{
                    "type" : 6,
                    "offset" : 4606,
                    "screenviewOffset" : 4603,
                    "count" : 3,
                    "fromWeb" : true,
                    "exception" : {
                        "description" : "Uncaught TypeError: Cannot read 

IBM Tealeaf CX Client Framework Data Integration Guide  89



property 'type' of undefined",
                        "url" : "http://www.xyz.com/js/badscript.js",
                        "line" : 258
                    }
}

Performance (Type 7) messages
Performance messages show performance data from a browser. Performance messages are Type 7 JSON
messages.

Performance (Type 7) message schema
This is the schema for Performance (Type 7) messages.

{
    "$ref" : "MessageHeader",
    "performance": {
        "description": "Performance message",
        "type": "object",
        "properties": {     
                    },
        "additionalProperties" : false
    }
}
 

Performance (Type 7) message example
This is an example of a Performance (Type 7) message.

{
    "type": 7,
    "offset": 9182,
    "screenviewOffset": 9181,
    "count": 3,
    "fromWeb": true,
    "performance": {
        "timing": {
             "redirectEnd": 0,
             "secureConnectionStart": 0,
             "domainLookupStart": 159,
             "domContentLoadedEventStart": 2531,
             "domainLookupEnd": 159,
             "domContentLoadedEventEnd": 2551,
             "fetchStart": 159,
             "connectEnd": 166,
             "responseEnd": 1774,
             "domComplete": 2760,
             "responseStart": 728,
             "requestStart": 166,
             "redirectStart": 0,
             "unloadEventEnd": 0,
             "domInteractive": 2531,
             "connectStart": 165,
             "unloadEventStart": 0,
             "domLoading": 1769,
             "loadEventStart": 2760,
             "navigationStart": 0,
             "loadEventEnd": 2780,
             "renderTime": 986
            },
         "navigation": {
             "type": "NAVIGATE",
             "redirectCount": 0
        }
    }
}

90  Client Framework Data Integration Guide



Web Storage (Type 8) messages
Web Storage messages are any objects that contain information about local storage information on the
browser. Web Storage messages are Type 8 JSON messages.

Web Storage (Type 8) message schema
This is the schema for the Web Storage (Type 8) messages.

"$ref" : "MessageHeader",
webStorage: {
    key : &ldquo;string&rdquo;,
    value: &ldquo;string&rdquo;,
}

Web Storage (Type 8) message example
This is an example of a Web Storage (Type 8) message.

{
    type: 8,
    offset: 25,
    screenviewOffset: 23,
    count: 2,
    fromWeb: true,
    webStorage: {
        key: "vistCount"
        value: "5"
    }
}

Overstat Hover Event (Type 9) messages
Overstat Hover Event messages are any object containing information about mouse hover and hover-to-
click activity. Overstat Hover Event messages are Type 9 JSON messages.

Overstat Hover Event (Type 9) message schema
This is the schema for Overstat Hover Event (Type 9) messages

"$ref" : "MessageHeader",
event: {
    xPath: "string",
    hoverDuration: int,
    hoverToClick: boolean,
    gridPosition: {
        x: int,
        y: int
     }
}

Overstat Hover Event (Type 9) message example
This is an example of a Overstat Hover Event (Type 9) message.

{
    type: 9,
    offset: 25,
    screenviewOffset: 23,
    count: 2,
    fromWeb: true, 
    event: {
        xPath: "[\"ii\"]",
        hoverDuration: 5457,
        hoverToClick: false,
        gridPosition: {
            x: 3,
            y: 2
        }
}

IBM Tealeaf CX Client Framework Data Integration Guide  91



Layout (Type 10) messages
Layout messages show the current display layout of a native page. Layout messages are Type 10 JSON
messages.

Layout (Type 10) message schema
This is the schema for Layout (Type 10) messages.

"$ref" : "MessageHeader",
"version": {
  "description": "Message Version, must be in x.x format",
  "type": "string",
  "required": true
                 },
"layoutControl": {
  "description": "Control on application page",
  "type": "object",
  "properties": {     
    "position": {
      "description": "Position of control",
      "type": "object",
      "properties": {     
        "x": { 
          "title": "X of the control",
          "type": "integer",
          "required": true
        },
        "y": { 
          "title": "Y of the control",
          "type": "integer",
          "required": true
        },
        "height": { 
          "title": "height of control",
          "type": "integer",
          "required": true
        },
        "width": { 
          "title": "width of control",
          "type": "integer",
          "required": true
        }
      },
      "additionalProperties" : false
    }
    "id": { 
      "title": "Id/Name/Tag of control",
      "type": "string",
      "required": true
    },
    "type": { 
      "title": "Type of control",
      "type": "string",
      "required": true
    },
    "subType": { 
      "title": "SubType of control",
      "type": "string",
      "required": true
    },
    "tlType": { 
      "title": "tlType of control that normalizes the control type for eventing",
      "type": "string",
      "required": true
    },
    "currState": { 
      "title": "Current state of control",
      "type": "object",
      "required": true,
      "properties": {     
        "?": { // Could be any variable name given by developer
            "title": "Additional data in string format",
            "type": "string",
            "required": false
        }
      }       
    },
    "style" : { 
      "title": "Style of the control",

92  Client Framework Data Integration Guide



      "type": "object",
      "required": true,
      "properties": {     
        "textColor": { 
          "title": "Text color",
          "type": "string",
          "required": true
        },
        "textAlphaColor": { 
          "title": "Text alpha color",
          "type": "string",
          "required": true
        },
        "textBGColor": { 
          "title": "Text background color",
          "type": "string",
          "required": true
        },
        "textBGAlphaColor": { 
          "title": "Text background alpha color",
          "type": "string",
          "required": true
        },
        "bgColor": { 
            "title": "Background color",
            "type": "string",
            "required": true
        },
        "bgAlphaColor": { 
            "title": "Background alpha color",
            "type": "string",
            "required": true
        }
      }    
    }
  },
  "additionalProperties" : false
}

Layout (Type 10) message example
This is an example of a Layout (Type 10 ) message.

 
{
    "offset": 27004,
    "screenviewOffset": 4706,
    "count": 16,
    "fromWeb": false,
    "type": 10,
    "version" : "1.0",
    "orientation" : 0,
    "deviceHeight": 592,
    "deviceWidth":  360,
    "layout": {
        "name": "loginPage",
        "class": "loginPageActivty",
        "controls": [
            {
                "position": {
                    "y": 38,
                    "height": 96,
                    "width": 720,
                    "x": 0
                },
                "id": "com.tl.uiwidget:id\/userNameLabel",
                "idType": -1,
                "type": "UILabel",
                "subType": "UIView",
                "tlType": "label",
                "currState": {
                    "text": "User name*"
                },
                "style": {
                    "textColor": 16777215,
                    "textAlphaColor": 1,
                    "textBGColor": 0,
                    "textBGAlphaColor": 0,
                    "bgColor": 0,
                    "bgAlphaColor": 0
                }

IBM Tealeaf CX Client Framework Data Integration Guide  93



            },
            {...},
            {...}
        ]
    }
}

Gesture (Type 11) messages
Gesture messages are used to log user action and behavior. A Gesture message consists of a control
identifier and a the value returned by that control. The control identifiers are mapped to specific controls
on the client logging platform. The value can be a number, a text string or structured data. Gesture
messages are Type 12 JSON messages.

Gesture (Type 11) message schema
This is the schema for Gesture (Type 11) messages.

Touch events

This is a JSON object that represents a gesture finger that is linked to control underneath the finger. It is
reused in targets property of gesture type 11.This is the schema for touch events:

{   
      "$ref" : "MessageHeader",   
      "focusInOffset": {        
      "title": "Milliseconds offset from offset for when focusIn of text 
fields occur",       
      "type": "integer",       
      "required": false   
      },   
      "target": {       
      "description": "Control being logged",       
      "type": "object",       
      "properties": {            
          "position": {       
              "description": "Position of control being logged",       
              "type": "object",       
              "properties": {            
                  "x": {        
                      "title": "X of the control",       
                      "type": "integer",       
                      "required": true       
                  },       
                  "y": {        
                      "title": "Y of the control",       
                      "type": "integer",       
                      "required": true       
                  },       
                  "height": {        
                      "title": "height of control",       
                      "type": "integer",       
                      "required": true       
                  },       
                  "width": {        
                      "title": "width of control",       
                      "type": "integer",       
                      "required": true       
                  },       
                  "relXY": {        
                      "title": "relative X & Y ratio that can be
                                from 0 
to 1 with a default value of 0.5",       
                      "type": "string",       
                      "required": true for click events       
                  },
                  "scrollX": {
                     "title": "scroll X of the page",
                     "type": "integer",
                     "required": true
                  },
                  "scrollY": {
                     "title": "scroll Y of the page",
                      "type": "integer",
                      "required": true
                  },
              },       

94  Client Framework Data Integration Guide



              "additionalProperties" : false       
          }       
          "id": {        
              "title": "Id/Name/Tag of control",       
              "type": "string",       
              "required": true       
          },
          "idType":{                 
              "title": "Indicates what id is based on: Native id (e.g. HTML  
'id' attribute): -1,
               xPath: -2, or Custom attribute for 
UIC and Hashcode value for Native: -3, or xPath for Native iOS/Android: -4",               
               "type": "integer",               
               "required": true            
          },       
          "dwell": {        
              "title": "Dwell time of control",       
              "type": "integer value that is in milliseconds",       
              "required": false       
          },       
          "focusInOffset": {        
              "title": "Offset when control got focus",       
              "type": "integer value that is in milliseconds",       
              "required": true in UIC       
          },       
          "visitedCount": {        
              "title": "Number of times a form control has been visited to be 
filled by
      user.",       
              "type": "integer",       
              "required": false       
          },       
          "isParentLink": {        
              "title": "To indicate if control a A type tag",       
              "type": "boolean",       
              "required": false only in UIC for usability       
          },       
          "name": {        
              "title": "Name of control",       
              "type": "string",       
              "required": true in UIC       
          },       
          "type": {        
              "title": "Type of control",       
              "type": "string",       
              "required": true       
          },       
          "subType": {        
              "title": "SubType of control",       
              "type": "string",       
              "required": true       
          },       
          "tlType": {        
              "title": "tlType of control that normalizes the control type for
      eventing",       
              "type": "string",       
              "required": true       
          },                 
          "prevState": {        
              "title": "Previous state of control",       
              "type": "object",       
              "required": false,       
              "properties": {            
                  "?": { // Could be any variable name given by developer       
                      "title": "Additional data in string format",       
                      "type": "string",       
                      "required": false       
                  }       
              }              
          },       
          "currState": {        
              "title": "Current state of control",       
              "type": "object",       
              "required": true,       
              "properties": {            
                  "?": { // Could be any variable name given by developer       
                      "title": "Additional data in string format",       
                      "type": "string",       
                      "required": false       
                  }       
              }              
          }       

IBM Tealeaf CX Client Framework Data Integration Guide  95



      },       
      "additionalProperties" : false   
      }   
      "event": {       
      "description": "Event from control",       
      "type": "object",       
      "properties": {            
          "tlEvent": {        
              "title": "Tealeaf type of event",       
              "type": "string",       
              "required": true       
          },       
          "type": {        
              "title": "Type of event",       
              "type": "string",       
              "required": false       
          },       
          "subType": {        
              "title": "Subtype of event",       
              "type": "string",       
              "required": false       
          }       
      },       
      "additionalProperties" : false   
      }}

Tap event schema

This contains only one touch object. This is the schema for tap events:

{
    "$ref" : "MessageHeader",
    "event": {
        "description": "Event from control",
        "type": "object",
        "properties": {     
            "tlEvent": { 
                "title": "Tealeaf type of event",
                "type": "string",
                "required": true
            },
            "type": { 
                "title": "Type of event framework reports",
                "type": "string",
                "required": false
            }
        }
    },
    "touches": {
        "description": "Gestures touch objects per finger.",
        "type": "array",
        "required": true
        "items": {
                "description": "Touch objects per finger starting with intial 
and ends with last object when finger is lifted from device.",
                "type": "array",
                "required": true,
                "$ref": "Touch"
            }
        }
    }
}

Swipe event schema

The swipe event contains only one touch object which will be the initial location with its corresponding
direction and velocity. This is the schema for swipe events:

{
    "$ref" : "MessageHeader",
    "event": {
        "description": "Event from control",
        "type": "object",
        "properties": {     
            "tlEvent": { 
                "title": "Tealeaf type of event",

96  Client Framework Data Integration Guide



                "type": "string",
                "required": true
            },
            "type": { 
                "title": "Type of event framework reports",
                "type": "string",
                "required": false
            }
        }
    },
    "touches": {
        "description": "Gestures touch objects per finger.",
        "type": "array",
        "required": true
        "items": {
                "description": "Touch objects per finger starting with intial 
and ends with last object when finger is lifted from device.",
                "type": "array",
                "required": true,
                "$ref": "Touch"
            }
        }
    },
    "direction": { 
        "title": "The direction of the swipe which can be up, down. left or 
right.",
        "type": "string",
        "required": true
    },
    "velocityX": { 
        "title": "The velocity of this measured in pixels per second along the 
x axis",
        "type": "float",
        "required": true
    },
    "velocityY": { 
        "title": "The velocity of this measured in pixels per second along the 
y axis",
        "type": "float",
        "required": false
    }
}

Pinch events

The pinch event contains only an initial touch object per finger and the last touch object per finger, with
the corresponding direction. This is the schema for pinch events:

{
    "$ref" : "MessageHeader",
    "event": {
        "description": "Event from control",
        "type": "object",
        "properties": {     
            "tlEvent": { 
                "title": "Tealeaf type of event",
                "type": "string",
                "required": true
            },
            "type": { 
                "title": "Type of event framework reports",
                "type": "string",
                "required": false
            }
        }
    },
    "touches": {
        "description": "Gestures touch objects per finger.",
        "type": "array",
        "required": true
        "items": {
                "description": "Touch objects per finger starting with intial and 
ends with last object when finger is lifted from device.",
                "type": "array",
                "required": true,
                "$ref": "Touch"
            }
        }
    },

IBM Tealeaf CX Client Framework Data Integration Guide  97



    "direction": { 
        "title": "Direction of pinch which can be open or close",
        "type": "string",
        "required": true
    }
}

Gesture (Type 11) message example
These are examples of UIC SDK Gesture (Type 11) messages.

Tap events

This example is a gesture message for a tap event:

{
  "fromWeb": false,
  "type": 11,
  "offset": 46788,
  "screenviewOffset": 42208,
  "count": 14,
  "event": {
    "type": "ACTION_DOWN",
    "tlEvent": "tap"
  },
  "touches": [
    [
      {
        "position": {
          "x": 179,
          "y": 543
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.17,0.93"
              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
          "idType": -4,
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      }
    ]
  ]
}

Double tap events

This example is a gesture message for a double tap event:

{
  "fromWeb": false,
  "type": 11,
  "offset": 49585,
  "screenviewOffset": 45005,
  "count": 15,
  "event": {
    "type": "ACTION_DOWN",
    "tlEvent": "doubleTap"
  },
  "touches": [
    [
      {
        "position": {
          "x": 182,
          "y": 520
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.17,0.8"

98  Client Framework Data Integration Guide



              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
           "idType": -4,
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      }
    ]
  ]
}

Tap hold events

This example is a gesture message for a tap hold event:

{
  "fromWeb": false,
  "type": 11,
  "offset": 52389,
  "screenviewOffset": 47809,
  "count": 16,
  "event": {
    "type": "ACTION_DOWN",
    "tlEvent": "tapHold"
  },
  "touches": [
    [
      {
        "position": {
          "x": 182,
          "y": 536
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.17,0.89"
              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
          "idType": -4,
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      }
    ]
  ]
}

Swipe event example

The swipe event contains only one touch object which will be the initial location with its corresponding
direction and velocity. This example is a message for a swipe event:

{
  "fromWeb": false,
  "type": 11,
  "offset": 54409,
  "screenviewOffset": 49829,
  "count": 17,
  "event": {
    "type": "ACTION_DOWN",
    "tlEvent": "swipe"
  },
  "direction": "right",
  "velocityX": 7762.8466796875,
  "velocityY": 127.47991943359375,
  "touches": [
    [
      {
        "position": {

IBM Tealeaf CX Client Framework Data Integration Guide  99



          "x": 75,
          "y": 538
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.07,0.9"
              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      },
      {
        "position": {
          "x": 212,
          "y": 526
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.2,0.84"
              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
          "idType": -4,
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      }
    ]
  ]
}

Pinch events

The pinch event contains only an initial touch object per finger and the last touch object per finger, with
the corresponding direction. This example is a message for a pinch event:

{
    "type": 11,
    "offset": 2220,
    "screenviewOffset": 2022,
    "count": 6,
    "fromWeb": false,
    "event": {
        "tlEvent": "pinch",
        "type": "onScale"
    },
    "touches": [ 
        [
            {
                "position": {
                    "y": 388,
                    "x": 0
                },
                "control": {
                    "position": {
                        "height": 100,
                        "width": 100,
                        "relXY": "0.6,0.8"
                          "scrollX": 10
                          "scrollY": 15
                    },
                    "id": "com.tl.uic.appDarkHolo:id/imageView1",
                    "idType": -1,
                    "type": "ImageView",
                    "subType": "View",
                    "tlType": "image"
                }
            },
            {

100  Client Framework Data Integration Guide



                "position": {
                    "y": 388,
                    "x": 400
                },
                "control": {
                    "position": {
                        "height": 100,
                        "width": 100,
                        "relXY": "0.4,0.7"
                          "scrollX": 10
                          "scrollY": 15
                    },
                    "id": "com.tl.uic.appDarkHolo:id/imageView1",
                    "idType": -1,
                    "type": "ImageView",
                    "subType": "View",
                    "tlType": "image"
                }
            }
        ],
        [
            {
                "position": {
                    "y": 388,
                    "x": 800
                },
                "control": {
                    "position": {
                        "height": 100,
                        "width": 100,
                        "relXY": "0.6,0.8"
                          "scrollX": 10
                          "scrollY": 15
                    },
                    "id": "com.tl.uic.appDarkHolo:id/imageView1",
                    "idType": -1,
                    "type": "ImageView",
                    "subType": "View",
                    "tlType": "image"
                }
            },
            {
                "position": {
                    "y": 388,
                    "x": 500
                },
                "control": {
                    "position": {
                        "height": 100,
                        "width": 100,
                        "relXY": "0.4,0.7"
                          "scrollX": 10
                          "scrollY": 15
                },
                    "id": "com.tl.uic.appDarkHolo:id/imageView1",
                    "idType": -1,
                    "type": "ImageView",
                    "subType": "View",
                    "tlType": "image"
                }
            }
        ]
    ],
   "direction": "close"
}

DOM Capture (Type 12) messages
DOM Capture messages are objects that contain serialized HTML data (DOM snapshot) of the page. DOM
Capture Messages are Type 12 JSON messages.

DOM Capture (Type 12) message schema
This is the schema for the DOM Capture (Type 12) messages.

"$ref" : "MessageHeader",
"domCapture": {
    "description": "Serialized HTML snapshot of the document.",
    "type": "object",
    "properties": {     

IBM Tealeaf CX Client Framework Data Integration Guide  101



        "dcid": {
            "title": "Unique identifier of this DOM snapshot.",
            "type": "string",
            "required": true
        }
          "fullDOM": {
            "title": "Flag indicating if the contents of this message contain 
a full DOM or a DOM diff.",
            "type": "boolean",
            "required": false        
        },
            "charset": { 
            "title": "Browser reported charset of the document.",
            "type": "string",
            "required": false
        },
        "root": { 
            "title": "Serialized HTML of the document.",
            "type": "string",
            "required": false
        },        
        "diffs": {
            "title": "List of DOM diff entries. Each entry can contain 
a HTML Diff or an attribute diff.",
            "type": "array",
            "required": false,
            "Item": {
                "title": "An object containing the DOM diff. The diff can 
be a HTML diff or an attribute diff.",
                "type": "object",
                "required": false,
                "properties": {
                    "xpath": {
                        "title": "The xpath of the node.",
                        "type": "string",
                        "required": true
                    },
                    "root": { 
                        "title": "Serialized HTML of the node referred 
by the xpath. Presence of this property constitutes a HTML diff.",
                        "type": "string",
                        "required": false
                    },
                    "attributes": {
                        "title": "List of attribute diff entries. Each entry 
contains a single attribute diff corresponding to the node 
referred by the xpath. Presence of this property constitutes 
an attribute diff.",
                        "type": "array",
                        "required": false,
                        "Item": {
                            "title": "An object containing the attribute 
diff.",
                            "type": "object",
                            "required": true,
                            "properties": {
                                "name": {
                                    "title": "The attribute name.",
                                    "type": "string",
                                    "required": true
                                },
                                "value": {
                                    "title": "The attribute value.",
                                    "type": "string",
                                    "required": true
                                }
                            }
                        }
                    }
                }
            }
        },
        "eventOn": { 
            "title": "Flag indicating if Tealeaf eventing should be enabled 
for this DOM Capture snapshot.",
            "type": "boolean",
            "required": false
        },
        "url": { 
            "title": "URL path of the snapshot document",
            "type": "string",
            "required": false

102  Client Framework Data Integration Guide



        },
        "host": { 
            "title": "URL Host of the snapshot document",
            "type": "string",
            "required": false
        },
        "error": { 
            "title": "Error message",
            "type": "string",
            "required": false
        },
        "errorCode": { 
            "title": "Error code corresponding to the error message.",
            "type": "integer",
            "required": false
        },
        "frames": { 
            "title": "Serialized HTML of any child frames of the document",
            "type": "array",
            "required": false,
            "Item": {
                "title": "An object containing serialized HTML of the frame",
                "type": "object",
                "required": false,
                "properties": {

                    "tltid": {

                        "title": "Unique identifier for this frame. Same tltid is 
added to the serialized HTML source of the parent."

                        "type": "string",
                        "required": true

                    },

                    "charset": { 
                        "title": "Browser reported charset of the document.",
                        "type": "string",
                        "required": true
                    },
                    "url": { 
                        "title": "URL path of the snapshot document",
                        "type": "string",
                        "required": true
                    },
                    "host": { 
                        "title": "URL Host of the snapshot document",
                        "type": "string",
                        "required": true
                    },

                    "root": { 
                        "title": "Serialized HTML of the document.",
                        "type": "string",
                        "required": true
                    }
                }
            }       
        },
        "canvas" : { 
            "title": "Serialized data of the canvas snapshot.",
            "type": "array",
            "required": false,
        }
    },
    "additionalProperties" : false
}
 

DOM Capture (Type 12) message example
This is an example of a DOM Capture (Type 12) message.

This example shows a DOM message with full DOM capture enabled:

{ 
    // DOM Capture messages use type 12
    "type": 12,

IBM Tealeaf CX Client Framework Data Integration Guide  103



    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "fullDOM":true
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
}

This example shows a DOM capture message with DOM diff enabled:

{
    "type": 12,
    "offset": 13874,
    "screenviewOffset": 13861,
    "count": 6,
    "fromWeb": true,
    "domCapture": {
        "fullDOM": false,
        "diffs": [
            {
                "xpath": "[[\"html\",0],[\"body\",0],[\"div\",1]]",
                "root": "<div class=\"bluebg\"><div><div>Input 1<input 
type=\"text\" name=\"ip-x-1\" value=\"\"></div></div></div>"
            }
        ],
        "dcid": "dcid-3.1437256358764",
        "eventOn": false
    }
}

 

DOM Diff (with HTML and attribute diff):

{
    "type": 12,
    "offset": 5794,
    "screenviewOffset": 5777,
    "count": 8,
    "fromWeb": true,
    "domCapture": {
        "fullDOM": false,
        "diffs": [
            {
                "xpath": "[[\"html\",0],[\"body\",0],[\"div\",2],[\"div\",1]]",
                "root": "<div>Select List:<select name=\"select.pvt\"><option 
value=\"O1\" selected=\"selected\">1</option><option value=\"O2\">2</option>
<option value=\"O3\">3</option></select></div>"
            },
            {
                "xpath": "[[\"cb1\"]]",
                "attributes": [
                    {
                        "name": "style",
                        "value": "height: 13px; width: 13px; visibility: hidden;"
                    }
                ]
            },
            {
                "xpath": "[[\"container_1\"],[\"table\",0],[\"tbody\",0],

104  Client Framework Data Integration Guide



[\"tr\",2],[\"td\",1],[\"select\",0]]",
                "attributes": [
                    {
                        "name": "style",
                        "value": "visibility: hidden;"
                    }
                ]
            }
        ],
        "dcid": "dcid-3.1437256879815",
        "eventOn": false
    }

}

This example shows the error message when the captured DOM message length exceeds the configured
threshold:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    // The DOM Capture data is namespaced in the domCapture object
    "domCapture": {
        // The "error" contains the verbose error message explaining why the 
DOM Capture couldn't be performed.
        "error": "Captured length (18045) exceeded limit (10000).",

        // The "errorCode" contains the numeric code for this error message. 
Currently, there is only 1 error message.
        "errorCode": 101,

        // The "dcid" property contains the unique string identifying this 
DOM Capture within the page instance.
        "dcid": "dcid-1.1414088027401"
    }
}

GeoLocation (Type 13) messages
A GeoLocation message logs a user's location information. The message consists of a control identifier
and a GeoLocation value. If the user has given the permission to use location data, GeoLocation returns
latitude, longitude, accuracy values. If the user has not given permission to use location data,
GeoLocation returns an error code and error string.

GeoLocation (Type 13) message schemas
This is the schema for the GeoLocation (Type 13) JSON messages:

This is the schema for messages from a device that the user has given permission to use location data:

"$ref" : "MessageHeader",
    "geolocation": {   
      "lat": double,     
      "long": double,     
      "accuracy": float
      }

This is the schema for messages from a device that the user has not given permission to use location
data:

"$ref" : "MessageHeader",
    "geolocation": {   
      "errorCode": int,     
      "error": "string",     
      }

IBM Tealeaf CX Client Framework Data Integration Guide  105



GeoLocation (Type 13) message examples
This is an example of the GeoLocation (Type 13) JSON message.

This is an example of a message from a device that the user has given permission to use location data:

{   "type": 13,                     
     "geolocation": {       
     "lat": 37.5680,                      
     "long": -122.3292,           
     "accuracy": 65                
     }
}

This is an example of a message from a device that the user has not given permission to use location data:

{   "type": 13,                     
     "geolocation": {       
      "errorCode": 201,         
      "error": "permission denied",
    }
}

Differences between frameworks
There are differences in how the SDKs capture and support the generic schema.

Schema changes for UI Capture j2

In Release 8.6, Tealeaf introduces a new version of UI Capture. IBM Tealeaf UI Capture is designed to
capture JSON messages that use the latest schema and to support the IBM Tealeaf cxOverstat product.

Release 8.6 and later requires IBM Tealeaf UI Capture to capture and transmit client-side user interface
events.

Schema changes for UI Capture for Ajax

Differences for UI Capture for Ajax include:

1. UI Capture does not send connection type messages.
2. UI Capture does not send stack trace messages. Instead, URL, line number, and error message are

submitted.
3. UI Capture does not automatically generate ScreenView LOAD and UNLOAD messages. Instead, the

monitored web application must use the appropriate API to inform UI Capture to send them.
4. UI Capture does not submit clientEnvironment messages.

Schema changes for Tealeaf Android SDK

Differences for the Android SDK include:

1. The message property count is not supported.
2. The timezoneOffset property is not supported.
3. For message control type 4:

• The position properties (x,y, height, width) are supported.
• The property idType is not supported on Android.
• The property subType is required.

iOS pageshow/pagehide normalization

iOS-based events to show and hide pages are normalized to the data standards of the JSON schema that
is used by Tealeaf.

106  Client Framework Data Integration Guide



iOS event
Tealeaf JSON event

pageshow
load

pagehide
unload

Tealeaf JSON properties
Several JSON data objects and properties are used by the IBM Tealeaf UI Capture JavaScript library. The
JSON format is a subset of the Tealeaf JSON schema object specification.

Locate information

When you search for information about a specific property, use the path information after the bracketed
references as a search string for the rest of the page. For example, if you are interested in information
about:

<global>.messageVersion

You can use the property as a search string for more reference information:

.messageVersion

High-level JSON structure

The high-level JSON data structure is:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 1,

    "sessions": [
      {
          "id": "ID12H15M50S521R0.25678676785555626",
          "startTime": 1324584950521,
          "timezoneOffset": 480,
          "messages": [ ... ],
          "clientEnvironment": {
              "webEnvironment": {
                  "libVersion":"1.0.0.152",
                  "page": "http://moksha.tealeaf.com/html4.html",
                  "windowId":"I7gF$t",
                  "screen":{
                      "orientation":0,
                      "orientationMode": "PORTRAIT"
                  }  // 'screen'
              }  // 'webEnvironment'
          }  // 'clientEnvironment'
      }  // anonymous session object
    ]  // 'sessions'
}  // anonymous global object

Object information

Each JSON property path description includes this information:

Identifier
Description

<global>
Refers to the anonymous global object that serves as a container for the JSON payload. For example,

IBM Tealeaf CX Client Framework Data Integration Guide  107



<global>.messageVersion 

<session>
Refers to the anonymous session object which in the "sessions" array. For example,

<session>.startTime 

<message>
Refers to the anonymous message object within the "messages" array. The message object serves as
a container for all supported message types.

charset
Browser reported charset of the document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.charset

Description
Browser reported charset of the document.

Value
Charset as reported by the browser. For a list of codes refer to: http://www.iana.org/
assignments/character-sets/character-sets.xhtm

Limitations
None

Dependencies
Used by Replay to correctly interpret the serialized HTML.

Example

This example shows a Type 12 DOM Capture message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

108  Client Framework Data Integration Guide



clientState
The state of the client, including pageHeight, pageWidth, and so on.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState

Description
The state of the client, including pageHeight, pageWidth, and so on.

Value
Object. Refer to individual property descriptions for details.

Limitations
The clientState object is present only in Client State message types
(<global>.<session>.<message>.type = 1)

Dependencies
None

Example

This example shows the Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

count
The index of the message in the session. The count of the first message is 1. This field is a generic
message property that is used in multiple message types.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.count

Description
The index of the message in the session. The count of the first message is 1. This field is a generic
message property that is used in multiple message types.

Value
Integer.

IBM Tealeaf CX Client Framework Data Integration Guide  109



Limitations
None

Dependencies
Replay uses the count to order the UI events.

Examples

This example shows the count field in a DOM Capture (Type 12) message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

dcid
A unique identifier for the DOM Capture snapshot that helps in associating the type 12 DOM Capture with
its corresponding type 4 or type 2 trigger message.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.dcid

Description
A unique identifier for the DOM Capture snapshot that helps in associating the type 12 DOM Capture
with its corresponding type 4 or type 2 trigger message.

Value
An opaque string that is unique within the context of all other DOM snapshots that originate from this
application page.

Limitations
None

Dependencies
Replay uses it to uniquely identify the DOM Snapshot that is associated with the corresponding type 4
and type 2 messages.

Examples

This example shows the dcid property in the Type 12 DOM Capture message:

{ 
    // DOM Capture messages use type 12

110  Client Framework Data Integration Guide



    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

description
A description of the exception.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.exception.description

Description
A description of the exception.

Value
String

Limitations
None

Dependencies
None.

Example

This example shows a Type 6 Exception message with a description property:

{
                "type" : 6,
                "offset" : 4606,
                "screenviewOffset" : 4603,
                "count" : 3,
                "fromWeb" : true,
                "exception" : {
                    "description" : "Uncaught TypeError: Cannot read property 
'type' of undefined",
                    "url" : "http://www.xyz.com/js/badscript.js",
                    "line" : 258
                }
}

deviceHeight
This is the initial session device height of the display/viewport in pixels.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

IBM Tealeaf CX Client Framework Data Integration Guide  111



Path
<global>.<session>.<message>.clientState.deviceHeight

Description
The initial session device height of the display/viewport in pixels.

Value
An integer.

Limitations
None

Dependencies
Used by replay

Example

This example shows the Client Environment message for UIC:

clientEnvironment" : {
    "webEnvironment" : {
        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {
            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,
            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }
    }

}

This example shows the Client Environment message for Android and iOS:

"clientEnvironment": {
                "orientation": 90,
                "height": 720,
                "osVersion": "4.2.2",
                "pixelDensity": 2,
                "width": 1196,
                "deviceHeight": 360,
                "osType": "Android" or "iOS"
                "deviceWidth": 598
}

deviceWidth
This is the initial session device width of the display/viewport in pixels.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.deviceWidth

Description
The initial session device width of the display/viewport in pixels.

Value
An integer.

Limitations
None

Dependencies
Used by replay

112  Client Framework Data Integration Guide



Example

This example shows the Client Environment message for UIC:

clientEnvironment" : {
    "webEnvironment" : {
        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {
            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,
            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }
    }

}

This example shows the Client Environment message for Android and iOS:

"clientEnvironment": {
                "orientation": 90,
                "height": 720,
                "osVersion": "4.2.2",
                "pixelDensity": 2,
                "width": 1196,
                "deviceHeight": 360,
                "osType": "Android" or "iOS"
                "deviceWidth": 598
}

error
Error text that explains why DOM Capture failed.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.error

Description
Error message that explains why DOM Capture failed.

Value
String

Limitations
None

Dependencies
None

Example

This example shows the Type 12 DOM Capture error message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    // The DOM Capture data is namespaced in the domCapture object

IBM Tealeaf CX Client Framework Data Integration Guide  113



    "domCapture": {
        // The "error" contains the verbose error message explaining why the 
DOM Capture couldn't be performed.
        "error": "Captured length (18045) exceeded limit (10000).",

        // The "errorCode" contains the numeric code for this error message. 
Currently, there is only 1 error message.
        "errorCode": 101,

        // The "dcid" property contains the unique string identifying this 
DOM Capture within the page instance.
        "dcid": "dcid-1.1414088027401"
    }
}

errorCode
Error code corresponding to the error message.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.errorCode

Description
Error code corresponding to the error message.

Value
Number

Limitations
None

Dependencies
Used by Replay.

Example

This example shows the Type 12 DOM Capture error message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    // The DOM Capture data is namespaced in the domCapture object
    "domCapture": {
        // The "error" contains the verbose error message explaining why the 
DOM Capture couldn't be performed.
        "error": "Captured length (18045) exceeded limit (10000).",

        // The "errorCode" contains the numeric code for this error message. 
Currently, there is only 1 error message.
        "errorCode": 101,

        // The "dcid" property contains the unique string identifying this 
DOM Capture within the page instance.
        "dcid": "dcid-1.1414088027401"
    }
}

event (client state)

• Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.event

Description

114  Client Framework Data Integration Guide



Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client state message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

event (control)

• Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.event

Description
An object containing information about the nature of the user action.

Value
Object. Refer to individual property descriptions for details.

Limitations
The event object is present only in control message types
(<global>.<session>.<message>.type = 4)

Dependencies
Replay uses various members of the event object.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",

IBM Tealeaf CX Client Framework Data Integration Guide  115



    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {...},
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

eventOn
Flag indicating whether Tealeaf eventing is enabled for this DOM Capture snapshot.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.eventOn

Description
Flag indicating whether Tealeaf eventing is enabled for this DOM Capture snapshot. This flag is true
for the first DOM capture of the page. For subsequent DOM captures of the page, the flag is false.

Value
True or False

Limitations
None

Dependencies
Used by Tealeaf Eventing to determine whether eventing is allowed for this snapshot.

Example

This example shows a Type 12 DOM capture message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],

116  Client Framework Data Integration Guide



        "canvas": []
    }
}

<frames>.charset
Browser reported charset of the child frame of the document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.<frames>.
charset

Description
Browser reported charset of the child frame of the document.

Value
Charset as reported by the browser. For a list of codes refer to: http://www.iana.org/
assignments/character-sets/character-
sets.xhtm

Limitations
None

Dependencies
Used by Replay to correctly interpret the serialized HTML.

Example

This example shows a Type 12 DOM Capture message with frames:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

<frames>.host
URL Host of the child frame of the snapshot document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.<frames>host

IBM Tealeaf CX Client Framework Data Integration Guide  117



Description
URL Host of the child frame of the snapshot document.

Value
URL host string.

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 12 DOM Capture message with frames:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

<frames>.root
Serialized HTML of the child frame of the document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.<frames>.root

Description
Serialized HTML of the child frame of the document.

Value

HTML

Limitations
None

Dependencies

Used by Tealeaf Eventing and Replay.

118  Client Framework Data Integration Guide



Example

This example shows a Type 12 DOM Capture message with frames:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

<frames>.tltid
Unique identifier for this frame. Same tltid is added to the serialized HTML source of the parent.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.<frames>.tltid

Description
A unique identifier for this frame. Same tltid is added to the serialized HTML source of the parent.

Value
An opaque string that is unique within the context of this DOM snapshot message.

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 12 DOM capture message with frames:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>

IBM Tealeaf CX Client Framework Data Integration Guide  119



</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

<frames>.url
URL path of the child frame of the snapshot document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.<frames>.url

Description
URL path of the child frame of the snapshot document.

Value
URL path string.

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 12 DOM Capture message with frames:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

120  Client Framework Data Integration Guide



fromWeb
A Boolean flag that indicates whether the message originated from a web browser or web view.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.fromWeb

Description
A Boolean flag that indicates whether the message originated from a web browser or web view.

Value
True or false

Limitations
None

Dependencies
None

Example

This example shows a Type 4 Control message that came from a web view:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {...},
                "event": {...}
            }],
            "clientEnvironment": {...}
        }
    ]
}

height
The height in CSS pixels of the target object.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.position.height

Description
The height in CSS pixels of the target object.

Value
Integer

Limitations
None

Dependencies
cxOverstat uses this information for producing heat maps.

IBM Tealeaf CX Client Framework Data Integration Guide  121



Example

This example shows a Type 4 Control message::

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {
                        "width": 67,
                        "height": 22,
                        "relXY": "0.5,0.3"
                    },
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

height (Client Environment)
The initial session height of the display/viewport divided by pixel density.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.height

Description
The initial session height of the display/viewport divided by pixel density.

Value
An integer.

Limitations
None

Dependencies
Used by replay

This example shows the Client Environment message for UIC:

clientEnvironment" : {
    "webEnvironment" : {
        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {
            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,

122  Client Framework Data Integration Guide



            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }
    }

}

This example shows the Client Environment message for Android and iOS:

"clientEnvironment": {
                "orientation": 90,
                "height": 720,
                "osVersion": "4.2.2",
                "pixelDensity": 2,
                "width": 1196,
                "deviceHeight": 360,
                "osType": "Android" or "iOS"
                "deviceWidth": 598
}

host
URL Host of the snapshot document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.host

Description
URL Host of the snapshot document.

Value
URL host string.

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 12 DOM Capture message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",

IBM Tealeaf CX Client Framework Data Integration Guide  123



                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

href
The destination of an anchor link.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.currState.href

Description
The destination of an anchor link.

Value
String value that indicates the destination (for example, http://www.example.com).

Limitations
None

Dependencies
None

Example

This example shows the target portion of a message:

"target": {
                "id": "[[\"HTML\",0],[\"BODY\",0],[\"A\",0]]",
                "idType": -2,
                "name": "",
                "tlType": "link",
                "type": "A",
                "subType": "",
                "currState": {
                    "innerText": "A link",
                    "href": "http://tealeaf.com"
                },
                "xPath": "[[\"HTML\",0],[\"BODY\",0],[\"A\",0]]",
                "isParentLink": false
            }

id
A unique identifier for the page instance. All hits from the page instance share an id value. A page reload
or navigating away from the page resets the value.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.id

Description
A unique identifier for the page instance. All hits from the page instance share an id value. A page
reload or navigating away from the page resets the value.

Value
An integer corresponding to milliseconds since Jan 1, 1970 Coordinated Universal Time.

Limitations
None

Dependencies
Replay uses the id to identify all the events that belong to a single page instance.

124  Client Framework Data Integration Guide

http://www.example.com


Example

This example shows a portion of a message with the session id:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [...],
            "clientEnvironment": {...}
        }
    ]
}

id (target)
An opaque string that is used to uniquely identify the target HTML element. Uniqueness cannot be
guaranteed by the library. It is the responsibility of the application developer to provide the elements with
static and unique HTML id's or custom attributes. The Tealeaf library can then be configured to use either
of these properties to uniquely identify the element. In the absence of these unique identifiers, the
Tealeaf library defaults to using the XPath as the id. An XPath works in most situations but cannot
guarantee to uniquely identify the element.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.id

Description
An opaque string that is used to uniquely identify the target HTML element. Uniqueness cannot be
guaranteed by the library. It is the responsibility of the application developer to provide the elements
with static and unique HTML id's or custom attributes. The Tealeaf library can then be configured to
use either of these properties to uniquely identify the element. In the absence of these unique
identifiers, the Tealeaf library defaults to using the XPath as the id. An XPath works in most situations
but cannot guarantee to uniquely identify the element.

Value
String

Limitations
None

Dependencies
Replay, Overstat, and Step-Based Eventing all use the id.

Example

This example shows a Type 4 Control message with an id used for the target:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {

IBM Tealeaf CX Client Framework Data Integration Guide  125



                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {...},
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

idType
An enumeration that identifies the type of id being used by the library. The idType is only used by the
browser-based UI Capture SDK.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.idType

Description
An enumeration that identifies the type of id being used by the library. The idType is only used by
the browser-based UI Capture SDK.

Value
Native id (for example, HTML 'id' attribute): -1, XPath: -2 for UIC, Custom attribute for UIC and
Hashcode value for Native: -3, or XPath for Native iOS/Android: -4

Limitations
None

Dependencies
Replay uses this information with the target id to do a reverse lookup to get to the target element in
the DOM.

Example

This example shows a Control (Type 4) message with an id that is derived from the XPath for Native iOS/
Android, idType is (-4):

{
                    "screenviewOffset": 217,
                    "target": {
                        "id": "[KV,0]",
                        "position": {
                            "y": 368,
                            "x": 0,
                            "width": 360,
                            "height": 224
                        },
                        "idType": -4,
                        "currState": {
                            "y": "0",
                            "x": "0"
                        },
                        "style": {
                            "paddingTop": 3,
                            "paddingBottom": 0,
                            "paddingLeft": 0,
                            "hidden": false,
                            "paddingRight": 0
                        },
                        "subType": "View",
                        "type": "KeyboardView",

126  Client Framework Data Integration Guide



                        "tlType": "keyboard"
                    },
                    "type": 4,
                    "offset": 280,
                    "count": 1,
                    "fromWeb": false,
                    "event": {
                        "type": "UIKeyboardDidShowNotification",
                        "tlEvent": "kbDisplayed"
                    }
                },

This example shows a Control (Type 4) message with an id that is an assigned id, idType is (-1:

{
                    "count": 6,
                    "event": {
                        "tlEvent": "click",
                        "type": "Click"
                    },
                    "fromWeb": false,
                    "offset": 1664,
                    "screenviewOffset": 1601,
                    "target": {
                        "currState": {
                            "font": {
                                "bold": false,
                                "italic": false,
                                "name": "sans-serif",
                                "size": 36
                            },
                            "text": "Login"
                        },
                        "id": "com.ibm.tealeaf.aurora:id/login_button",
                        "idType": -1,
                        "position": {
                            "height": 96,
                            "width": 493,
                            "x": 113,
                            "y": 680
                        },
                        "style": {
                            "hidden": false,
                            "paddingBottom": 16,
                            "paddingLeft": 24,
                            "paddingRight": 24,
                            "paddingTop": 16,
                            "textAlign": "center",
                            "textAlphaColor": 255,
                            "textColor": 11711154
                        },
                        "subType": "TextView",
                        "tlType": "button",
                        "type": "Button"
                    },
                    "type": 4
                },

innerText
Value of display text in an anchor tag.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.currState.innerText

Description
Value of display text in an anchor tag.

Value
String value that indicates the displayed text.

Limitations
None

IBM Tealeaf CX Client Framework Data Integration Guide  127



Dependencies
None

Example

This example shows the target portion of a message:

"target": {
                "id": "[[\"HTML\",0],[\"BODY\",0],[\"A\",0]]",
                "idType": -2,
                "name": "",
                "tlType": "link",
                "type": "A",
                "subType": "",
                "currState": {
                    "innerText": "A link",
                    "href": "http://tealeaf.com"
                },
                "xPath": "[[\"HTML\",0],[\"BODY\",0],[\"A\",0]]",
                "isParentLink": false
            }

isParentLink
Used to indicate whether the target object has a parent button or <a> link.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.isParentLink

Description
Value is set to true if the target object has a parent button or <a> link.

Value
Boolean

Limitations
None

Dependencies
None

Example

This example shows the target section of a message:

"target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {
                        "width": 67,
                        "height": 22,
                        "relXY": "0.5,0.3"
                    },
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }

128  Client Framework Data Integration Guide



libVersion
The library version number.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.clientEnvironment.webEnvironment.libVersion

Description
The library version number.

Value
String of the format X.X.X.Y where X = 0-9 and Y is any positive integer (build number)

Limitations
None

Dependencies
None

Example

This example shows the sessions portion of a message with the library version:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [...],
            "clientEnvironment": {
                "webEnvironment": {
                    "libVersion": "1.0.0.152",
                    "page": "http://moksha.tealeaf.com/html4.html#",
                    "windowId": "I7Gf$t",
                    "screen": {
                        "orientation": 0,
                        "orientationMode": "PORTRAIT"
                    }
                }
            }
        }
    ]
}

line
The line number where the exception occurred.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.exception.line

Description
The line number where the exception occurred.

Value
Number

Limitations
None

Dependencies
None.

IBM Tealeaf CX Client Framework Data Integration Guide  129



Example

This example shows a Type 6 Exception message:

{
                    "type" : 6,
                    "offset" : 4606,
                    "screenviewOffset" : 4603,
                    "count" : 3,
                    "fromWeb" : true,
                    "exception" : {
                        "description" : "Uncaught TypeError: Cannot read property 
'type' of undefined",
                        "url" : "http://www.xyz.com/js/badscript.js",
                        "line" : 258
                    }
}

messageVersion
The JSON Format version number.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.messageVersion

Description
The JSON Format version number.

Value
String of the format X.X.X.X where X = 0-9.

Limitations
None

Dependencies
None

Example

This example shows the message version:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [...],
            "clientEnvironment": {...}
        }
    ]
}

name
The value of the name attribute of the target HTML element.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.name

Description
The value of the name attribute of the target HTML element.

Value
String

130  Client Framework Data Integration Guide



Limitations
The underlying HTML element must have a name attribute.

Dependencies
Replay and Step-Based eventing use this property.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {...},
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

offset
The message's time that is offset in milliseconds since the start of the session
(<global>.<session>.startTime)

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.offset

Description
The message's time that is offset in milliseconds since the start of the session
(<global>.<session>.startTime)

Value
Integer.

Limitations
None

Dependencies
None

IBM Tealeaf CX Client Framework Data Integration Guide  131



Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {...},
                "event": {...}
            }],
            "clientEnvironment": {...}
        }
    ]
}

orientation
This is the original orientation of the screen.,

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.orientation

Description
The original orientation of the screen.

Value
An integer. Valid values are 0, 90, 180, or -90.

Limitations
An integer. Valid values are 0, 90, 180, or -90.

Dependencies
Used by templates to generate the correct html page to dislay in BBR.

Example

This example shows the Client Environment message for UIC:

clientEnvironment" : {
    "webEnvironment" : {
        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {
            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,
            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }
    }

}

132  Client Framework Data Integration Guide



This example shows the Client Environment message for Android and iOS:

"clientEnvironment": {
                "orientation": 90,
                "height": 720,
                "osVersion": "4.2.2",
                "pixelDensity": 2,
                "width": 1196,
                "deviceHeight": 360,
                "osType": "Android" or "iOS"
                "deviceWidth": 598
}

pageHeight
The HTML document height in CSS pixels.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.pageHeight

Description
The HTML document height in CSS pixels.

Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

IBM Tealeaf CX Client Framework Data Integration Guide  133



pageWidth
The HTML document width in CSS pixels.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.pageWidth

Description
The HTML document width in CSS pixels.

Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

position
An object that contains information about the location of the pointing device and the target object's width
and height within the context of a user action message.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.position

Description
An object that contains information about the location of the pointing device and the target object's
width and height within the context of a user action message.

Value
Object containing width, height, and relXY properties. Refer to individual property descriptions for
details.

134  Client Framework Data Integration Guide



Limitations
None

Dependencies
cxOverstat uses this information for producing heat maps.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {
                        "width": 67,
                        "height": 22,
                        "relXY": "0.5,0.3"
                    },
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

referrer (Screenview)
The name of the previous Screenview, if any, of the page that generated the JSON message. If there is no
referrer, this field is a blank string. This field is in iOS and Android Screenview messages, not UIC.
Path

<message>.<screenview>.referrer
Description

The name of the previous Screenview, if any, of the page that generated the JSON message. If there is
no referrer, this field is a blank string.

Value
String.

Limitations
None

Dependencies
Used by Replay.

IBM Tealeaf CX Client Framework Data Integration Guide  135



Example

This example shows a Screenview message:

{
    "offset": 124,
    "contextOffset": 4556,
    "type": 2,
    "context": { 
            "type": "LOAD", 
            "name": "PAGE 2", 
            "referrer": "PAGE 1" 
        } 
}
 
{ 
    "type": 2, 
    "offset": 19216 
 
    "context": { 
        "type": "UNLOAD", 
        "name": "PAGE 2" 
    } 
} 
 
{
    "type": 2,
    "offset": 2144,
    "contextOffset": 0,
    "count": 9,
    "fromWeb": true,

    "webviewId": "webview1",
    "screenview": {
        "type": "LOAD",
        "name": "Ford",
        "url": "/dynamic/ford.aspx",

        "host": "http://www.cartest.com",
        "referrer": "BMW",
        "referrerUrl": "/dynamic/bmw.aspx"
    }
}

referrer (webEnvironment)
The HTTP referrer, if any, of the page that generated the JSON message. If there is no referrer this is a
blank string.

Supported frameworks: IBM Tealeaf UI Capture

Path
clientEnvironment.webEnvironment.referrer

Description
The HTTP referrer, if any, of the page. If there is no referrer this is a blank string.

Value
String.

Limitations
None

Dependencies
Used by Replay.

Example

This example shows the UIC Client Environment message:

"clientEnvironment" : {
    "webEnvironment" : {
        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {

136  Client Framework Data Integration Guide



            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,
            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }

    }

}

relXY
The relative X and Y co-ordinate of the pointing device within the target object that is calculated as a
fraction of the width and height of the target. The fractional value is rounded off to a single decimal. This
property is generated only if a click event is recorded.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.position.relXY

Description
The relative X and Y co-ordinate of the pointing device within the target object that is calculated as a
fraction of the width and height of the target. The fractional value is rounded off to a single decimal.

Value
String of the format "X,Y" where X = 0.0 - 1.0 and Y = 0.0 - 1.0. Default value is 0.5,0.5.

Limitations
None

Dependencies
cxOverstat uses this information for producing heat maps.
This property is generated only if a click event is recorded.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {
                        "width": 67,
                        "height": 22,
                        "relXY": "0.5,0.3"
                    },
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"

IBM Tealeaf CX Client Framework Data Integration Guide  137



                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

root
Serialized HTML of the document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.root

Description
Serialized HTML of the document.

Value

HTML

Limitations
None

Dependencies

Used by Tealeaf Eventing and Replay.

Example

This example shows a Type 12 DOM Capture message:

{ 
    // DOM Capture messages use type 12
    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

screenviewOffset
The message's time that is offset in milliseconds since the start of the screenview with which this
message is associated.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.screenviewOffset

138  Client Framework Data Integration Guide



Description
The message's time that is offset in milliseconds since the start of the screenview with which this
message is associated.

Value
Integer.

Limitations
None

Dependencies
None

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {...},
                "event": {...}
            }],
            "clientEnvironment": {...}
        }
    ]
}

scrollX
The number of pixels that the document is currently scrolled from the left.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.gesture.scrollx

Description
The number of pixels that the document is currently scrolled from the left.

Value
Integer

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 11 Gesture message:

{
  "fromWeb": false,
  "type": 11,
  "offset": 46788,
  "screenviewOffset": 42208,
  "count": 14,

IBM Tealeaf CX Client Framework Data Integration Guide  139



  "event": {
    "type": "ACTION_DOWN",
    "tlEvent": "tap"
  },
  "touches": [
    [
      {
        "position": {
          "x": 179,
          "y": 543
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.17,0.93"
              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
          "idType": -4,
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      }
    ]
  ]
}

scrollY
The number of pixels that the document is currently scrolled from the top.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.gesture.scrolly

Description
The number of pixels that the document is currently scrolled from the top.

Value
Integer

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 11 Gesture message:

{
  "fromWeb": false,
  "type": 11,
  "offset": 46788,
  "screenviewOffset": 42208,
  "count": 14,
  "event": {
    "type": "ACTION_DOWN",
    "tlEvent": "tap"
  },
  "touches": [
    [
      {
        "position": {
          "x": 179,
          "y": 543
        },
        "control": {
          "position": {
            "height": 184,
            "width": 1080,
            "relXY": "0.17,0.93"

140  Client Framework Data Integration Guide



              "scrollX": 10
              "scrollY": 15
          },
          "id": "[RL,0]",
          "idType": -4,
          "type": "RelativeLayout",
          "subType": "ViewGroup",
          "tlType": "canvas"
        }
      }
    ]
  ]
}

serialNumber
The serial number of the payload from a specific page instance. The first hit from a new page instance
always begins with a serial number of 1. Every subsequent hit from the same page instance increments
the serial number by 1. A page reload or navigating away from the page resets the value.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.serialNumber

Description
The serial number of the payload from a specificgiven page instance. The first hit from a new page
instance always begins with a serial number of 1. Every subsequent hit from the same page instance
increments the serial number by 1. A page reload or navigating away from the page resets the value.

Value
A positive integer.

Limitations
None

Dependencies
Replay uses this property to order and combine the events in the correct sequence.

Example

This example shows the sessions portion of a message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [...],
            "clientEnvironment": {...}
        }
    ]
}

startTime
An absolute time stamp (milliseconds since Jan 1, 1970 Coordinated Universal Time) indicating when the
current page instance (session) was started. A page reload or navigating away from the page resets the
value.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.startTime

IBM Tealeaf CX Client Framework Data Integration Guide  141



Description
An absolute time stamp (milliseconds since Jan 1, 1970 Coordinated Universal Time) indicating when
the current page instance (session) was started. A page reload or navigating away from the page
resets the value.

Value
An integer.

Limitations
None

Dependencies
None

Example

This example shows the sessions portion of a message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [...],
            "clientEnvironment": {...}
        }
    ]
}

subType
String containing the HTML type of input element.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.subType

Description
String containing the HTML type of input element.

Value
String containing the valid HTML INPUT element types such as check box, radio, text, etc.

Reference
http://www.w3.org/TR/html401/interact/forms.html#h-17.4.1

Limitations
Valid only for HTML INPUT element type.

Dependencies
None

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {

142  Client Framework Data Integration Guide

http://www.w3.org/TR/html401/interact/forms.html#h-17.4.1


                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {...},
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

target
An object that contains information about the HTML element that is the target of a user action.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target

Description
An object that contains information about the HTML element that is the target of a user action.

Value
Object. Refer to individual property descriptions for details.

Limitations
The target object is present only in control message types
(<global>.<session>.<message>.type = 4)

Dependencies
Replay, Overstat, and Step-Based Eventing use various members of the target object.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {
                        "width": 67,
                        "height": 22,

IBM Tealeaf CX Client Framework Data Integration Guide  143



                        "relXY": "0.5,0.3"
                    },
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

timezoneOffset
The difference, in minutes, between UTC and local time. This means that the offset is positive if the local
timezone is behind UTC and negative if it is ahead. Changing the timezone settings on the machine might
cause the timezoneOffset to change within the session. Daylight Saving Time prevents this value from
being a constant even for a specific locale.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.timezoneOffset

Description
The difference, in minutes, between UTC and local time. This means that the offset is positive if the
local timezone is behind UTC and negative if it is ahead. Changing the timezone settings on the
machine might cause the timezoneOffset to change within the session. Daylight Saving Time prevents
this value from being a constant even for a specific locale.

Value
An integer value corresponding to the difference, in minutes, between UTC (timezoneOffset = 0) and
local time.

Limitations
None

Dependencies
None

Example

This example shows the sessions portion of a message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [...],
            "clientEnvironment": {...}
        }
    ]
}

type (message)
Enumeration that is used to identify the type of message. The message type determines the subsequent
properties that would be populated within the message object.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.type

144  Client Framework Data Integration Guide



Description
Enumeration that is used to identify the type of message. The message type determines the
subsequent properties that would be populated within the message object.

Value
Integer.

• 1 - Client State
• 2 - Screenview
• 3 - Connection (not used by UIC)
• 4 - Control
• 5 - Custom
• 6 - Exception
• 7 - Performance
• 8 - Web storage
• 9 - Overstat hover event
• 10 - Layout
• 11 - Gesture
• 12 - DOM Capture
• 13 - Geolocation

Limitations
None

Dependencies
Replay, Overstat, Step-Based Eventing use this value.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {...},
                "event": {...}
            }],
            "clientEnvironment": {...}
        }
    ]
}

type (event)
An enumeration that contains information about the nature of the user action.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.event.type

IBM Tealeaf CX Client Framework Data Integration Guide  145



Description
An enumeration that contains information about the nature of the user action.

Value
String.

• click - When a user clicks or taps on a non-input type HTML element such as a link, div, image. Click
actions on input type HTML elements are consolidated into change or blur messages.

• change - A user action with an input type HTML element results in a state change. For example,
when text is entered into a textbox or a checkbox is toggled.

• blur - A user action with an input type HTML element does not result in a state change. For example,
when the user tabs through a text box without changing it's content etc.

• orientationchange - A user action that changes the orientation on browsers and platforms
supporting portrait and landscape modes.

• touchend - A user action that provides pinch gesture information on browsers and platforms that
have gesture support.

Limitations
None.

Dependencies
Replay and Overstat use this property to determine the nature of user interaction.

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {...},
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

type (target)
The HTML element tag of the target element.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.type

Description
The HTML element tag of the target element.

Value
String containing any of the valid HTML element types such as "A", "INPUT", "DIV" etc.

146  Client Framework Data Integration Guide



Limitations
None

Dependencies
None

Example

This example shows a Type 4 Control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {...},
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

url
URL path of the snapshot document.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.domCapture.url

Description
URL path of the snapshot document.

Value
URL path string.

Limitations
None

Dependencies
Used by Replay.

Example

This example shows a Type 12 DOM Capture message:

{ 
    // DOM Capture messages use type 12

IBM Tealeaf CX Client Framework Data Integration Guide  147



    "type": 12,

    // The standard UIC message properties
    "offset": 16821,
    "screenviewOffset": 16817,
    "count": 5,
    "fromWeb": true,

    "domCapture": {
        "dcid": "dcid-3"
        "charset": "ISO-8859-1",
        "root": "<html><body><iframe id="greeting.html" tltid="tlt-4"/>
</body></html>",
        "host": "http://www.uictest.com",
        "url": "/h4/dcTest.html",
        "eventOn": true,
        "frames": [
            {
                "tltid": "tlt-4",
                "root": "<html><body>Hello, World!</body></html>",
                "charset": "ISO-8859-1",
                "host": "http://www.uictest.com",
                "url": "/h4/greeting.html"
            }
        ],
        "canvas": []
    }
    }
}

viewPortHeight
The viewport height in CSS pixels.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.viewPortHeight

Description
The viewport height in CSS pixels.

Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,

148  Client Framework Data Integration Guide



                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

viewPortWidth
The viewport width in CSS pixels.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.viewPortWidth

Description
The viewport width in CSS pixels.

Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

viewPortX
The viewport location X coordinate.

Supported frameworks: IBM Tealeaf UI Capture

IBM Tealeaf CX Client Framework Data Integration Guide  149



Path
<global>.<session>.<message>.clientState.viewPortX

Description
The viewport location X coordinate of the upper left corner.

Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

viewPortY
The viewport location Y coordinate.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.viewPortY

Description
The viewport location Y coordinate of the upper left corner.

Value
Integer.

Limitations
None.

Dependencies
None

150  Client Framework Data Integration Guide



Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,
                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

viewTime
The view time in milliseconds.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.viewTime

Description
The viewport location X coordinate.

Value
Integer.

Limitations
None.

Dependencies
None

Example

This example shows a Type 1 Client State message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 1,
                "offset": 7353,
                "screenviewOffset": 7352,

IBM Tealeaf CX Client Framework Data Integration Guide  151



                "count": 2,
                "fromWeb": true,
                "clientState": {
                    "pageWidth": 954,
                    "pageHeight": 820,
                    "viewPortWidth": 877,
                    "viewPortHeight": 836,
                    "viewPortX": 0,
                    "viewPortY": 0,
                    "event": "load",
                    "viewTime": 0
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

webviewId
Used to identify which webview the message came from. This field is only used when fromWeb is true and
the application is a hybrid application.

Supported frameworks: IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.webviewId

Description
Used to identify which webview the message came from. This field can appear in any JSON message
where fromWeb is true and the application is a hybrid application.

Value
webviewn where n is the identifier for the webview that generated the JSON.

Limitations
None

Dependencies
BBR uses this to determine which webview produced the JSON and to know what to highlight or
select.

Example

This example shows an Application Context (Type 2) message with the webivewId field:

 {
                    "count": 2,
                    "dcid": "dcid-1.1429298094152s",
                    "fromWeb": true,
                    "offset": 2010,
                    "screenview": {
                        "host": "file://",
                        "name": "root",
                        "referrer": "",
                        "type": "LOAD",
                        "url": "/android_asset/mobile_domcap/
embeddedGesturesMenu.html"
                    },
                    "screenviewOffset": 0,
                    "type": 2,
                    "webviewId": "tl.hybridhtmlembedded:id/myWebView1"
                },

width
The width in CSS pixels of the target object.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.target.position.width

152  Client Framework Data Integration Guide



Description
The width in CSS pixels of the target object.

Value
Integer

Limitations
None

Dependencies
Overstat uses this information for producing heat maps.

Example

This example shows a type 4 control message:

{
    "messageVersion": "1.1.0.0",
    "serialNumber": 2,
    "sessions": [
        {
            "id": "ID13H56M10S772R0.955239302458247",
            "startTime": 1343076970772,
            "timezoneOffset": 420,
            "messages": [
            {
                "type": 4,
                "offset": 17329,
                "screenviewOffset": 17327,
                "count": 8,
                "fromWeb": true,
                "target": {
                    "id": "bi",
                    "idType": -1,
                    "name": "buttonInput",
                    "type": "INPUT",
                    "subType": "button",
                    "position": {
                        "width": 67,
                        "height": 22,
                        "relXY": "0.5,0.3"
                    },
                    "prevState": {...},
                    "currState": {...},
                    "isParentLink": false
                },
                "event": {
                    "type": "click"
                }
            }],
            "clientEnvironment": {...}
        }
    ]
}

width (Client Environment)
The Initial session width of the display/viewport divided by pixel density.

Supported frameworks: Android, iOS, IBM Tealeaf UI Capture

Path
<global>.<session>.<message>.clientState.width

Description
The initial session width of the display/viewport divided by pixel density.

Value
An integer.

Limitations
None

IBM Tealeaf CX Client Framework Data Integration Guide  153



Dependencies
Used by replay

Example

This example shows the Client Environment message for UIC:

clientEnvironment" : {
    "webEnvironment" : {
        "libVersion" : "5.0.0.XXXX",
        "page" : "http://uictest.com/frames/",
        "referrer" : "http://uictest.com/",
        "screen" : {
            "devicePixelRatio" : 1,
            "deviceWidth" : 1920,
            "deviceHeight" : 1080,
            "deviceToolbarHeight" : 34,
            "width" : 942,
            "height" : 955,
            "orientation" : 0,
            "orientationMode" : "PORTRAIT"
        }
    }

}

This example shows the Client Environment message for Android and iOS:

"clientEnvironment": {
                "orientation": 90,
                "height": 720,
                "osVersion": "4.2.2",
                "pixelDensity": 2,
                "width": 1196,
                "deviceHeight": 360,
                "osType": "Android" or "iOS"
                "deviceWidth": 598
}

Default client framework objects
Each client framework has a default set of JSON objects. The objects map to System Step Attributes
provided by Tealeaf.

Data sources for JSON objects

This table maps JSON attributes submitted by one or more client frameworks to the System Step
Attributes provided by Tealeaf. These attributes are available in the System Step Attributes label in
the Hit Attributes tab of the Event Manager.

Table 16. Default Client Framework Objects

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.messageVersion
Y Y Y

.serialNumber Y Y Y

.sessions[0].clientEnvironment.
osVersion

Y Y

154  Client Framework Data Integration Guide



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].clientEnvironment.
height

Y Y

.sessions[0].clientEnvironment.
width

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.appName

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.totalMemory

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.totalStorage

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.orientationType

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.appVersion

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.manufacturer

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.userId

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.locale

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.deviceModel

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.language

Y Y

.sessions[0].clientEnvironment.
mobileEnvironment.android.brand

Y

.sessions[0].clientEnvironment.
mobileEnvironment.android.
fingerPrint

Y

.sessions[0].clientEnvironment.
mobileEnvironment.android.
keyboardType

Y

IBM Tealeaf CX Client Framework Data Integration Guide  155



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].clientEnvironment.
webEnvironment.libVersion

Y

.sessions[0].clientEnvironment.
webEnvironment.page

Y

.sessions[0].clientEnvironment.
webEnvironment.screen.orientation

Y

.sessions[0].clientEnvironment.
webEnvironment.screen.
orientationMode

Y

.sessions[0].id Y

.sessions[0].message.
clientState.event

Y

.sessions[0].message.
clientState.pageHeight

Y Y

.sessions[0].message.
clientState.pageWidth

Y Y

.sessions[0].message.
clientState.viewPortHeight

Y

.sessions[0].message.
clientState.viewPortWidth

Y

.sessions[0].message.
clientState.viewPortX

Y

.sessions[0].message.
clientState.viewPortXStart

Y

.sessions[0].message.
clientState.viewPortY

Y

.sessions[0].message.
clientState.viewPortYStart

Y

.sessions[0].message.
clientState.viewTime

Y

.sessions[0].message.
connection.description

Y Y

156  Client Framework Data Integration Guide



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].message.
connection.initTime

Y Y

.sessions[0].message.
connection.loadTime

Y Y

.sessions[0].message.
connection.responseDataSize

Y Y

.sessions[0].message.
connection.responseTime

Y Y

.sessions[0].message.
connection.statusCode

Y Y

.sessions[0].message.
connection.url

Y Y

.sessions[0].message.count Y

.sessions[0].message.
customEvent.name

Y Y Y

.sessions[0].message.
customEvent.
data.[property based on 
custom event]

Y Y Y

.sessions[0].message.
event.tlEvent

Y Y Y

.sessions[0].message.
event.type

Y Y Y

.sessions[0].message.
event.subType

Y Y Y

.sessions[0].message.
exception.description

Y Y Y

.sessions[0].message.
exception.line

Y

.sessions[0].message.
exception.name

Y Y

.sessions[0].message.
exception.stackTrace

Y Y

IBM Tealeaf CX Client Framework Data Integration Guide  157



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].message.
exception.url

Y

.sessions[0].message.
focusInOffset

Y Y Y

.sessions[0].message.
fromWeb

Y Y Y

.sessions[0].message.
mobileState.orientation

Y Y

.sessions[0].message.
mobileState.freeStorage

Y Y

.sessions[0].message.
mobileState.battery

Y Y

.sessions[0].message.
mobileState.freeMemory

Y Y

.sessions[0].message.
mobileState.connectionType

Y Y

.sessions[0].message.
mobileState.carrier

Y Y

.sessions[0].message.
mobileState.
networkReachability

Y Y

.sessions[0].message.
mobileState.ip

Y Y

.sessions[0].message.
mobileState.
androidState.keyboardState

Y

.sessions[0].message.
offset

Y Y Y

.sessions[0].message.
performance.
navigation.redirectCount

Y

.sessions[0].message.
performance.navigation.type

Y

158  Client Framework Data Integration Guide



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].message.
performance.timing.
connectEnd

Y

.sessions[0].message.
performance.timing.
connectStart

Y

.sessions[0].message.
performance.timing.
domainLookupEnd

Y

.sessions[0].message.
performance.
timing.domainLookupStart

Y

.sessions[0].message.
performance.timing.
domComplete

Y

.sessions[0].message.
performance.timing.
domContentLoadedEventEnd

Y

.sessions[0].message.
performance.timing.
domContentLoadedEventStart

Y

.sessions[0].message.
performance.timing.
domInteractive

Y

.sessions[0].message.
performance.timing.
domLoading

Y

.sessions[0].message.
performance.timing.
fetchStart

Y

.sessions[0].message.
performance.timing.
loadEventEnd

Y

.sessions[0].message.
performance.timing.
loadEventStart

Y

.sessions[0].message.
performance.timing.
navigationStart

Y

IBM Tealeaf CX Client Framework Data Integration Guide  159



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].message.
performance.timing.
redirectEnd

Y

.sessions[0].message.
performance.timing.
redirectStart

Y

.sessions[0].message.
performance.timing.
responseEnd

Y

.sessions[0].message.
performance.timing.
responseStart

Y

.sessions[0].message.
performance.timing.
secureConnectionStart

Y

.sessions[0].message.
performance.timing.
unloadEventEnd

Y

.sessions[0].message.
performance.timing.
unloadEventStart

Y

.sessions[0].message.
screenview.name

Y Y Y Y

.sessions[0].message.
screenview.referrer

Y Y Y Y

.sessions[0].message.
screenview.renderTime

Y

.sessions[0].message.
screenview.type

Y Y Y Y

.sessions[0].message.
screenview.url

Y Y

.sessions[0].message.
screenviewOffset

Y Y Y Y

.sessions[0].message.target.
currState.[property based
on control]

Y Y Y

160  Client Framework Data Integration Guide



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].message.
target.dwell

Y Y Y

.sessions[0].message.
target.id

Y Y Y Y

.sessions[0].message.
target.idType

Y Y

.sessions[0].message.
target.isParentLink

Y Y

.sessions[0].message.
target.name

Y

.sessions[0].message.
target.position.height

Y Y Y

.sessions[0].message.
target.position.relXY

Y Y

.sessions[0].message.
target.position.width

Y Y Y

.sessions[0].message.
target.position.x

Y Y

.sessions[0].message.
target.position.y

Y Y

.sessions[0].message.
target.prevState.[property 
based on control]

Y Y Y

.sessions[0].message.
target.subType

Y Y Y

.sessions[0].message.
target.tlType

Y Y Y

.sessions[0].message.
target.type

Y Y Y

.sessions[0].message.
target.visitedCount

Y Y Y

.sessions[0].message.type Y Y Y

IBM Tealeaf CX Client Framework Data Integration Guide  161



Table 16. Default Client Framework Objects (continued)

Step Attribute Path UIC(j2) IBM Tealeaf
cxOverstat (only)

iOS Android

.sessions[0].startTime
Y Y Y

.sessions[0].timezoneOffset
Y

Mappings between JSON properties to Tealeaf System Objects

In the table below, you can review how the JSON properties are mapped to hit attributes, events, and
dimensions that are provided by Tealeaf.

Table 17. Default Client Framework Objects

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.messageVersion "Step - SDK Version"
in the IBM Tealeaf
Event Manager
Manual

.serialNumber "Step - Serial
Number" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].
clientEnvironment.
webEnvironment.
libVersion

"Step - Client
Environment Library
Version" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].
clientEnvironment.
webEnvironment.page

"Step - Client
Environment Page" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].
clientEnvironment.
webEnvironment.screen.
orientation

"Step - Client
Environment Screen
Orientation" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].
clientEnvironment.
webEnvironment.screen.
orientationMode

"Step - Client
Environment Screen
Orientation Mode" in
the IBM Tealeaf Event
Manager Manual

162  Client Framework Data Integration Guide



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].
message.clientState.
event

"Step - ClientState
Event" in the IBM
Tealeaf Event
Manager Manual

"Step - Usability
Attention Map
Viewport Height" in
the IBM Tealeaf
Event Manager
Manual; "Step -
Usability Attention
Map Y View Time" in
the IBM Tealeaf
Event Manager
Manual; "Step -
Usability Focal Slice
Y (BB)" in the IBM
Tealeaf Event
Manager Manual

"Step - Usability Focal
Slice Y" in the IBM
Tealeaf Event Manager
Manual

.sessions[0].message.
clientState.pageHeight

"Step - ClientState
Page Height" in the
IBM Tealeaf Event
Manager Manual

"Step - Usability
Attention Map
Viewport Height" in
the IBM Tealeaf
Event Manager
Manual; "Step -
Usability Focal Slice
Y (BB)" in the IBM
Tealeaf Event
Manager Manual

"Step - Usability Focal
Slice Y" in the IBM
Tealeaf Event Manager
Manual

.sessions[0].message.
clientState.pageWidth

"Step - ClientState
Page Width" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
clientState.
viewPortHeight

"Step - ClientState
Viewport Height" in
the IBM Tealeaf Event
Manager Manual

"Step - Usability
Attention Map
Viewport Height
(BB)" in the IBM
Tealeaf Event
Manager Manual;
"Step - Usability
Attention Map Y View
Time" in the IBM
Tealeaf Event
Manager Manual;
"Step - Usability
Focal Slice Y (BB)" in
the IBM Tealeaf
Event Manager
Manual

"Step - Usability Focal
Slice Y" in the IBM
Tealeaf Event Manager
Manual; "Step -
Usability View Port
Height" in the IBM
Tealeaf Event Manager
Manual

.sessions[0].message.
clientState.
viewPortWidth

"Step - ClientState
Viewport Width" in
the IBM Tealeaf Event
Manager Manual

IBM Tealeaf CX Client Framework Data Integration Guide  163



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].message.
clientState.viewPortX

"Step - ClientState
Viewport X" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
clientState.viewPortY

"Step - ClientState
Viewport Y" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
clientState.viewTime

"Step - ClientState
View Time" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
connection.description

"Step - Connection
Description" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
connection.initTime

"Step - Connection
Init Time" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
connection.loadTime

"Step - Connection
Load Time" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
connection.
responseDataSize

"Step - Connection
Response Data Size"
in the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
connection.responseTime

"Step - Connection
Response Time" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
connection.statusCode

"Step - Connection
Status Code" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
connection.url

"Step - Connection
URL" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
screenViewOffset

164  Client Framework Data Integration Guide



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].
message.count

"Step - Message
Count" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
event.tlEvent

.sessions[0].message.
event.type

"Step - TL Event Type"
in the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
event.subType

"Step - Event Type" in
the IBM Tealeaf Event
Manager Manual

"Step - Usability
Form Field Visit" in
the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
focusInOffset

"Step - Focus Offset"
in the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
fromWeb

"Step - Message From
Web" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
objects.performance.
loadEventStart

"Step - Performance
URL Render Time" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
objects.performance.
redirectCount

"Step - Objects
Performance Redirect
Count" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
objects.performance.
referrer

"Step - Objects
Performance
Referrer" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
offset

"Step - Offset" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.
navigation.type

"Step - Performance
Navigation Type" in
the IBM Tealeaf Event
Manager Manual

IBM Tealeaf CX Client Framework Data Integration Guide  165



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].message.
performance.timing.
connectEnd

"Step - Performance
Connect End" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
connectStart

"Step - Performance
Connect Start" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domainLookupEnd

"Step - Performance
Dom Lookup End" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domainLookupStart

"Step - Performance
Dom Lookup Start" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domComplete

"Step - Performance
Dom Complete" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domContentLoadedEventEnd

"Step - Performance
Dom Content Loaded
Event End" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domContent
LoadedEventStart

"Step - Performance
Dom Loaded Event
Start" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domInteractive

"Step - Performance
Dom Interactive" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
domLoading

"Step - Performance
Dom Loading" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
fetchStart

"Step - Performance
Fetch Start" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
loadEventEnd

"Step - Performance
Load Event End" in
the IBM Tealeaf Event
Manager Manual

166  Client Framework Data Integration Guide



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].message.
performance.timing.
navigationStart

"Step - Performance
Navigation Start" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
redirectEnd

"Step - Performance
Redirect End" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
redirectStart

"Step - Performance
Redirect Start" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
responseEnd

"Step - Performance
Response End" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
responseStart

"Step - Performance
Response Start" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
secureConnectionStart

"Step - Performance
Secure Connection
Start" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
unloadEventEnd

"Step - Performance
Unload Event End" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
performance.timing.
unloadEventStart

"Step - Performance
Unload Event Start" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
screenview.name

"Step - ScreenView
Name" in the IBM
Tealeaf Event
Manager Manual

"Step - ScreenView
(BB)" in the IBM
Tealeaf Event
Manager Manual;
"Step - ScreenView
URL (BB)" in the IBM
Tealeaf Event
Manager Manual

"Step - ScreenView" in
the IBM Tealeaf Event
Manager Manual; "Step
- ScreenView URL" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
screenview.renderTime

"Step - ScreenView
Render Time" in the
IBM Tealeaf Event
Manager Manual

IBM Tealeaf CX Client Framework Data Integration Guide  167



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].message.
screenview.type

"Step - ScreenView
Type" in the IBM
Tealeaf Event
Manager Manual

"Step - ScreenView
(BB)" in the IBM
Tealeaf Event
Manager Manual;
"Step - ScreenView
URL (BB)" in the IBM
Tealeaf Event
Manager Manual

"Step - ScreenView" in
the IBM Tealeaf Event
Manager Manual; "Step
- ScreenView URL" in
the IBM Tealeaf Event
Manager Manual

.sessions[0].message.
screenview.url

"Step - ScreenView
URL" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
screenviewOffset

"Step - ScreenView
Offset" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.currState.label

"Step - Target
Current® Label" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
target.currState.text

"Step - Target Current
Text" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.currState.value

"Step - Target Current
Value" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.dwell

"Step - Target Dwell
Time" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.id

"Step - Target ID" in
the IBM Tealeaf Event
Manager Manual

"Step - Usability
Target ID + Type
(BB)" in the IBM
Tealeaf Event
Manager Manual

"Step - Target ID" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
target.idType

"Step - Target ID
Type" in the IBM
Tealeaf Event
Manager Manual

"Step - Usability
Target ID + Type
(BB)" in the IBM
Tealeaf Event
Manager Manual

"Step - Target ID" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
target.name

"Step - Target Name"
in the IBM Tealeaf
Event Manager
Manual

168  Client Framework Data Integration Guide



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].message.
target.position.height

"Step - Target Height"
in the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
target.position.relXY

"Step - Target
Relative XY" in the
IBM Tealeaf Event
Manager Manual

"Step - Usability
Click" in the IBM
Tealeaf Event
Manager Manual

"Step - Target Relative
XY" in the IBM Tealeaf
Event Manager Manual

.sessions[0].message.
target.position.width

"Step - Target Width"
in the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
target.prevState.label

"Step - Target Prev
Label" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.prevState.text

"Step - Target Prev
Text" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.prevState.value

"Step - Target
Previous Value" in the
IBM Tealeaf Event
Manager Manual

.sessions[0].message.
target.subType

"Step - Target
Subtype" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.tlType

"Step - Target TL
Type" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.type

"Step - Target Type"
in the IBM Tealeaf
Event Manager
Manual

.sessions[0].message.
target.visitedCount

"Step - Target Visit
Count" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].message.
target.xPath

.sessions[0].message.
type

"Step - Message
Type" in the IBM
Tealeaf Event
Manager Manual

IBM Tealeaf CX Client Framework Data Integration Guide  169



Table 17. Default Client Framework Objects (continued)

Step Attribute Path System Step
Attribute

As condition for
Event

feeds Dimension(s)

.sessions[0].startTime
"Step - Session Start
Time" in the IBM
Tealeaf Event
Manager Manual

.sessions[0].
timezoneOffset

"Step - Timezone
Offset" in the IBM
Tealeaf Event
Manager Manual

Tealeaf JSON schema - tlType
Different platforms use different names for objects, for example Android uses button, iOS uses
uibutton, and UIC uses <button>. Tealeaf uses tlType internally to assign a single type to all objects
that are the same type, regardless of how they are referred to on the platform that sent the message. For
example, ltType=button means that in Tealeaf the object type is button, while on the platform that
sent the message the control might be defined as a uibutton.

The tlType property is included for all controls that are monitored by each Tealeaf client framework.
Whether an individual control is supported by one or all of the client frameworks, it can be referenced for
eventing purposes through the tlType property. This table provides reference information about how
tlType values map across all of the supported client frameworks. N/A indicates that the control is not
supported in the client framework.

Table 18. Tealeaf JSON schema - tlType

tlType UIC Android iOS Description

barButtonItem N/A N/A UIBarButtonItem A bar button item is
a button that is
specialized for
placement on a
UIToolbar or
UINavigationBar
object. It inherits
basic button
behavior from its
abstract superclass,
UIBarItem.

barItem N/A N/A UIBarItem UIBarItem is an
abstract superclass
for items added to a
bar that appears at
the bottom of the
screen. Items on a
bar behave in a way
similar to buttons
(instances of
UIButton).

button <button> or <input
type="button">

Button UIButton Represents a push-
button widget.

170  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

button N/A Compound Button N/A A button with two
states, checked and
cleared.

button <input
type="button">

ImageButton UIButton Displays a button
with an image
(instead of text)
that can be pressed
or clicked by the
user.

calendar N/A CalendarView N/A

canvas <canvas> view UIView

checkBox <input type=
"checkbox">

CheckBox N/A A check box is a
specific type of
two-states button
that can be either
checked or cleared.

command <command> N/A N/A The <command>
tag defines a
command (a radio
button, a check box,
or a command
button) that the
user can start.

datePicker N/A DatePicker UIDatePicker This class is a
widget for selecting
a date.

dialerFilter N/A DialerFilter N/A It converts letters
to text according to
old-fashioned
phone keyboards
(abc=2, def=3, etc)

gallery N/A Gallery N/A A view that shows
items in a center-
locked, horizontally
scrolling list.

IBM Tealeaf CX Client Framework Data Integration Guide  171



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

gesture N/A android.gesture UIGesture
Recognizer

UIGesture
Recognizer is an
abstract base class
for concrete
gesture-recognizer
classes. A gesture-
recognizer object
(or a gesture
recognizer)
decouples the logic
for recognizing a
gesture and acting
on that recognition.
When one of these
objects recognizes
a common gesture
or, in some cases, a
change in the
gesture, it sends an
action message to
each designated
target object.

gesture N/A android.gesture UILongPress
Gesture Recognizer

UILongPress
Gesture Recognizer
is a concrete
subclass of
UIGesture
Recognizer that
looks for long-press
gestures. The user
must press one or
more fingers on a
view for at least a
specified period for
the action message
to be sent. In
addition, the fingers
may move only a
specified distance
for the gesture to
be recognized; if
they move beyond
this limit the
gesture fails.

172  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

gesture N/A android.gesture UIPanGesture
Recognizer

UIPanGesture
Recognizer is a
concrete subclass
of UIGesture
Recognizer that
looks for panning
(dragging) gestures.
The user must be
pressing one or
more fingers on a
view while they pan
it. Clients
implementing the
action method for
this gesture
recognizer can ask
it for the current
translation and
velocity of the
gesture.

gesture N/A android.gesture UIPinchGesture
Recognizer

UIPinchGesture
Recognizer is a
concrete subclass
of UIGesture
Recognizer that
looks for pinching
gestures involving
two touches. When
the user moves the
two fingers toward
each other, the
conventional
meaning is zoom-
out; when the user
moves the two
fingers away from
each other, the
conventional
meaning is zoom-in.

IBM Tealeaf CX Client Framework Data Integration Guide  173



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

gesture N/A android.gesture UIRotation Gesture
Recognizer

UIRotation Gesture
Recognizer is a
concrete subclass
of UIGesture
Recognizer that
looks for rotation
gestures involving
two touches. When
the user moves the
fingers opposite
each other in a
circular motion, the
underlying view
should rotate in a
corresponding
direction and
speed.

gesture N/A android.gesture UISwipe Gesture
Recognizer

UISwipe Gesture
Recognizer is a
concrete subclass
of UIGesture
Recognizer that
looks for swiping
gestures in one or
more directions. A
swipe is a discrete
gesture, and thus
the associated
action message is
sent only once per
gesture.

gesture N/A android.gesture UITap Gesture
Recognizer

UITap Gesture
Recognizer is a
concrete subclass
of UIGesture
Recognizer that
looks for single or
multiple taps. For
the gesture to be
recognized, the
specified number of
fingers must tap the
view a specified
number of times.

174  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

imagePicker N/A N/A UIImage
PickerController

The UIImage
PickerController
class manages
customizable,
system-supplied
user interfaces for
taking pictures and
movies on
supported devices,
and for choosing
saved images and
movies for use in
your app. An image
picker controller
manages user
interactions and
delivers the results
of those
interactions to a
delegate object.

image Switcher N/A ImageSwitcher N/A It is a view useful to
switch smoothly
between two
images and thus
provides ways of
transitioning from
one to another
through appropriate
animations.

link <a> N/A N/A Defines a hyperlink

menu <menu> N/A UIMenu Controller The singleton
UIMenu Controller
instance presents
the menu interface
for the Cut, Copy,
Paste, Select,
Select All, and
Delete commands.

menuItem N/A N/A UIMenuItem An instance of the
UIMenuItem class
represents a
custom item in the
editing menu
managed by the
UIMenu Controller
object.

IBM Tealeaf CX Client Framework Data Integration Guide  175



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

navigation Bar N/A N/A UINavigation Bar The
UINavigationBar
class implements a
control for
navigating
hierarchical
content. It's a bar,
typically displayed
at the top of the
screen, containing
buttons for
navigating up and
down a hierarchy.
The primary
properties are a left
(back) button, a
center title, and an
optional right
button. You can
specify custom
views for each of
these.

navigation
Controller

N/A N/A UINavigation
Controller

The UINavigation
Controller class
implements a
specialized view
controller that
manages the
navigation of
hierarchical
content. This class
is not intended for
subclassing.
Instead, you use
instances of it as is
in situations where
you want your
application's user
interface to reflect
the hierarchical
nature of your
content. This
navigation interface
makes it possible to
present your data
efficiently and also
makes it easier for
the user to navigate
that content.

176  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

navigationItem N/A N/A UINavigation Item The UINavigation
Item class
encapsulates
information about a
navigation item that
is pushed on a
UINavigation Bar
object's stack. A
navigation bar is a
control that is used
to navigate
hierarchical
content. A
UINavigation Item
specifies what is
displayed on the
navigation bar when
it is the top item
and also how it is
represented when it
is the back item.

numberPicker N/A NumberPicker N/A A widget that
enables the user to
select a number
form a predefined
range.

page Page Activity UIView Controller

IBM Tealeaf CX Client Framework Data Integration Guide  177



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

pageControl N/A N/A UIPageControl You use the
UIPageControl
class to create and
manage page
controls. A page
control is a
succession of dots
that are centered in
the control. Each
dot corresponds to
a page in the
application's
document (or other
data-model entity),
with the white dot
indicating the
currently viewed
page. For example,
When a user taps a
page control to
move to the next or
previous page, the
control sends the
UIControlEvent
ValueChanged
event for handling
by the delegate.
The delegate can
then evaluate the
currentPage
property to
determine the page
to display. The page
control advances
only one page in
either direction.

quickContact
Badge

N/A QuickContact
Badge

N/A Widget that is used
to show an image
with the standard
QuickContact badge
and on-click
behavior.

radioButton <input
type="radio">

RadioButton N/A A radio button is a
two-states button
that can be either
checked or cleared.

radioButton <input
type="radio">

RadioGroup N/A This class is used to
create a multiple-
exclusion scope for
a set of radio
buttons.

178  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

scroll <div> Horizontal
ScrollView

UIScrollView Layout container for
a view hierarchy
that can be scrolled
by the user,
allowing it to be
larger than the
physical display.

scroll <div> Scroller UIScrollView This class
encapsulates
scrolling.

scroll <div> ScrollView UIScrollView Layout container for
a view hierarchy
that can be scrolled
by the user,
allowing it to be
larger than the
physical display.

searchBox N/A SearchView UISearchBar A widget that
provides a user
interface for the
user to enter a
search query and
submit a request to
a search provider.

selectList <select> AbsSpinner UIPickerView,
UITableViewCell

An abstract base
class for spinner
widgets.

selectList <select> Spinner UIPickerView A view that displays
one child at a time
and lets the user
pick among them.

slider <input
type="range">

AbsSeekBar UISlider

slider N/A RatingBar UISlider A RatingBar is an
extension of
SeekBar and
ProgressBar that
shows a rating in
stars.

slider <input
type="range">

SeekBar UISlider A SeekBar is an
extension of
ProgressBar that
adds a draggable
thumb.

IBM Tealeaf CX Client Framework Data Integration Guide  179



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

stepper N/A UIStepper A stepper displays
two buttons, one
with a minus (-)
symbol and one
with a plus (+)
symbol. The
bounding rectangle
for a stepper
matches that of a
UISwitch object.

tabBar N/A TabWidget UITabBar The UITabBar class
implements a
control for selecting
one of two or more
buttons, called
items. The most
common use of a
tab bar is to
implement a modal
interface where
tapping an item
changes the
selection. Use a
UIToolbar object if
you want to
momentarily
highlight or not
change the
appearance of an
item when tapped.
The UITabBar class
provides the ability
for the user to
customize the tab
bar by reordering,
removing, and
adding items to the
bar. You can use a
tab bar delegate to
augment this
behavior.

180  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

tabBarItem TabHost.TabSpec UITabBarItem The UITabBarItem
class implements
an item on a tab
bar, instances of
the UITabBar class.
A tab bar operates
strictly in radio
mode, where one
item is selected at a
time by tapping a
tab bar item toggles
the view above the
tab bar. You can
also specify a badge
value on the tab bar
item for adding
more visual
information, for
example, the phone
application uses a
badge on the item
to show the number
of new messages.
This class also
provides a number
of system defaults
for creating items.

tabContainer N/A TabHost UITabBar
Controller

Container for a
tabbed window
view.

textBox N/A AutoComplete
TextView

N/A An editable text
view that shows
completion
suggestions
automatically while
the user is typing.

textBox N/A Checked TextView N/A An extension to
TextView that
supports the
Checkable
interface.

textBox <input> EditText UITextField EditText is a thin
veneer over
TextView that
configures itself to
be editable.

IBM Tealeaf CX Client Framework Data Integration Guide  181



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

textBox N/A MultiAuto
CompleteText View

N/A An editable text
view, extending
AutoComplete
TextView, that can
show completion
suggestions for the
substring of the text
where the user is
typing instead of
necessarily for the
entire thing.

textBox <input type="text"> TextView UITextField Displays text to the
user and optionally
allows them to edit
it.

textBox <textarea> EditText UITextView The UITextView
class implements
the behavior for a
scrollable, multiline
text region. The
class supports the
display of text using
a custom font,
color, and
alignment and also
supports text
editing. You
typically use a text
view to display
multiple lines of
text, such as when
displaying the body
of a large text
document.

timePicker N/A TimePicker N/A A view for selecting
the time of day, in
either 24 hour or
AM/PM mode.

toggleButton N/A Switch UISwitch A Switch is a two-
state toggle switch
widget that can
select between two
options.

toggleButton N/A ToggleButton UISwitch Displays checked/
unchecked states
as a button with a
"light" indicator and
by default that is
accompanied with
the text "ON" or
"OFF".

182  Client Framework Data Integration Guide



Table 18. Tealeaf JSON schema - tlType (continued)

tlType UIC Android iOS Description

webView N/A WebView UIWebView You use the
UIWebView class to
embed web content
in your application.
To do so, you
simply create a
UIWebView object,
attach it to a
window, and send it
a request to load
web content. You
can also use this
class to move back
and forward in the
history of
webpages, and you
can even set some
web content
properties
program- matically.

Tealeaf JSON schema - tlEvent
Each Tealeaf client framework tracks user interface events, some of which are specific to the type of
client application. Through the tlEvent property on the object controls, you can create one event to
track all corresponding user interface events across all of the frameworks. In the table below, for each
listed tlType, you can review the tlEvent reference, if applicable, and the corresponding object
information for each supported client framework.

Event behavior
Some event behaviors apply to all client frameworks.

This table provides descriptions of the behaviors of each monitored tlEvent. These behaviors apply to all
client frameworks.

Table 19. Event Behavior

tlType tlEvent only on these
Control objects

tl JSON Object type Event Behavior

actionSheet buttonIndex Control Indicates which button
user selected from action
sheet

showInView When action sheet is shown
in the view

showFromTabBar When action sheet is shown
from tab bar

showFromToolbar When action sheet is shown
from toolbar

alertView alertShown Control When alert is shown

buttonIndex Indicates which button
user selected from alert

IBM Tealeaf CX Client Framework Data Integration Guide  183



Table 19. Event Behavior (continued)

tlType tlEvent only on these
Control objects

tl JSON Object type Event Behavior

button click Control When user clicks button

calendar dateChange Control When user changes date on
calendar

canvas N/A Control This is the base class
where you design the
control. So you use the
class that extends this
class.

checkBox click Control When check box is clicked

datePicker dateChange Control When date is changed on
datePicker

gallery click Control When item is clicks gallery

imagePicker Not implemented Control N/A

gesture Not implemented Control N/A

gesture on any frameworks

gesture

gesture

gesture

gesture

gesture

link click Control When user clicks link

menu Not implemented Control N/A

numberPicker valueChange Control When user picks a number

page ScreenView ScreenView get created

Called before page appears
to user

LOAD Current page model that
user views on screen which
ScreenView object notifies
when page goes to
foreground

Called after page is loaded
into memory

Called before page goes to
background

UNLOAD Current page model that
user views on screen which
ScreenView object notifies
when page goes to
background

184  Client Framework Data Integration Guide



Table 19. Event Behavior (continued)

tlType tlEvent only on these
Control objects

tl JSON Object type Event Behavior

When page gets garbage
that is collected

pageControl Not implemented Control N/A

radioButton click Control When user clicks a radio
button

radioButton

scroll scrollChange Control When user scrolls page

scroll

searchBox valueChange Control When user clicks search
button

selectList valueChange Control When user selects an item
from the list

selectList

slider valueChange Control When user stops sliding the
control

slider

slider

stepper Not implemented N/A

tabContainer tabChange Control When user selects a tab

textBox textChange Control When user does a focus out
of a text box

textBox

textBox

textBox

textBox

textBox

timePicker timeChange Control When user changes time

toggleButton click Control When user clicks a toggle
button

toggleButton

UI Capture
There are several events that are unique to UI Capture.

This table lists and describes the events for UI Capture:

IBM Tealeaf CX Client Framework Data Integration Guide  185



Table 20. UI Capture

tlType tlEvent only on
these Control
objects

tl JSON Object type UIC UIC Event - See
Below at TL table
for HTML

button click Control <button> click, blur

button click Control <input> click, blur

checkBox change Control <input> change, blur

link click Control <a> click

page ScreenView Page

LOAD load

UNLOAD unload

radio
Button

change Control <input> change, blur

scroll scrollChange Control <div>

selectList valueChange Control <select> change, blur

textBox textChange Control <input> change, blur

textBox textChange Control <textarea> change, blur

Android
There are several events that are unique to the Android framework.

This table lists the events that are unique to the Android framework:

Table 21. Android

tlType tlEvent only on
these Control
objects

tl JSON Object
type

Android Android
Listener

Android Event

actionSheet buttonIndex Control N/A N/A N/A

showInView

showFrom
TabBar

showFrom
Toolbar

alertView alertShown Control N/A N/A N/A

buttonIndex

button click Control Button View.On
ClickListener

onClick

button Compound
Button

button ImageButton

calendar dateChange Control CalendarView CalendarView.
OnDate Change
Listener

onSelected
DayChange

186  Client Framework Data Integration Guide



Table 21. Android (continued)

tlType tlEvent only on
these Control
objects

tl JSON Object
type

Android Android
Listener

Android Event

canvas N/A Control view On the class it
self

onFinish Inflate

onFocus
Changed

onLayout

onMeasure

onOver Scrolled

onRestore
InstanceState

onScroll
Changed

onSetAlpha

onSize Changed

onVisibility
Changed

onWindow
Visibility
Changed

checkBox click Control CheckBox View.On
ClickListener

onClick

datePicker dateChange Control DatePicker DatePicker.
OnDate
Changed
Listener

onDate Changed

gallery click Control Gallery AdapterView.
OnItem
ClickListener

onItemClick

image
Picker

Not
implemented

Control N/A

gesture Not
implemented

Control android. gesture Gesture
Detector.
OnGesture
Listener

onDown

gesture on any
frameworks

android. gesture onFling

gesture android. gesture onLongPress

gesture android. gesture onScroll

gesture android. gesture onShowPress

gesture android. gesture onSingle TapUp

gesture android. gesture

IBM Tealeaf CX Client Framework Data Integration Guide  187



Table 21. Android (continued)

tlType tlEvent only on
these Control
objects

tl JSON Object
type

Android Android
Listener

Android Event

link click Control N/A

menu Not
implemented

Control N/A

number
Picker

valueChange Control NumberPicker Number
Picker.On
ValueChange
Listener

onValue Change

page ScreenView Activity On the class it
self

onCreate

LOAD onResume

UNLOAD onPause

onDestroy

page
Control

Not
implemented

Control N/A

radio Button click Control RadioButton View.On
ClickListener

onClick

radio Button RadioGroup RadioGroup.
OnChecked
Change Listener

onChecked
Changed

scroll scrollChange Control Horizontal
ScrollView

You have to
extend
Horizontal
ScrollView

onScroll
Changed

scroll ScrollView You have to
extend
ScrollView

onScroll
Changed

searchBox valueChange Control SearchView SearchView
Compat.On
QueryText
Listener Compat

onQuery
TextSubmit

selectList valueChange Control AbsSpinner AdapterView.
OnItem
Selected
Listener

onItem Selected

selectList Spinner

slider valueChange Control AbsSeekBar SeekBar.
OnSeekBar
Change Listener

onStop
TrackingTouch

slider SeekBar

slider RatingBar RatingBar.
OnRatingBar
Change Listener

onRating
Changed

188  Client Framework Data Integration Guide



Table 21. Android (continued)

tlType tlEvent only on
these Control
objects

tl JSON Object
type

Android Android
Listener

Android Event

stepper Not
implemented

N/A

tab
Container

tabChange Control TabHost TabHost. OnTab
Change Listener

onTab Changed

textBox textChange Control AutoComplete
TextView

View.OnFocus
Change Listener

onFocus Change

textBox Checked
TextView

textBox EditText

textBox MultiAuto
Complete
TextView

textBox TextView

textBox EditText

timePicker timeChange Control TimePicker TimePicker.
OnTime
Changed
Listener

onTime
Changed

toggle
Button

click Control Switch View. OnClick
Listener

onClick

toggle
Button

ToggleButton

iOS
There are several events that are unique to the iOS framework.

This table lists the events that are unique to the iOS framework:

Table 22. iOS

tlType tlEvent only on
these Control
objects

tl JSON Object
type

iOS iOS Event iOS TL Short
Name

action
Sheet

buttonIndex Control UIActionSheet clickedButton
AtIndex

showInView Not
implemented

actionSheet
ShowInView

showFrom
TabBar

Not
implemented

actionSheet
ShowFrom
TabBar

showFrom
Toolbar

Not
implemented

actionSheet
ShowFrom
Toolbar

IBM Tealeaf CX Client Framework Data Integration Guide  189



Table 22. iOS (continued)

tlType tlEvent only on
these Control
objects

tl JSON Object
type

iOS iOS Event iOS TL Short
Name

alertView alertShown Control UIAlertView Not
implemented

alertView Shown

buttonIndex clickedButton
AtIndex

button click Control UIButton ButtonTouch
UpInside

button N/A

button UIButton

calendar dateChange Control N/A N/A N/A

canvas N/A Control UIView

checkBox click Control N/A N/A N/A

datePicker dateChange Control UIDatePicker Not
implemented

Not
implemented

gallery click Control N/A N/A N/A

image
Picker

Not
implemented

Control UIImage Picker
Controller

Not
implemented

Not
implemented

gesture Not
implemented

Control UIGesture
Recognizer

gesture on any
frameworks

UILongPress
Gesture
Recognizer

gesture UIPan Gesture
Recognizer

gesture UIPinch Gesture
Recognizer

gesture UIRotation
Gesture
Recognizer

gesture UISwipe
Gesture
Recognizer

gesture UITap Gesture
Recognizer

link click Control N/A N/A N/A

menu Not
implemented

Control UIMenu
Controller

Not
implemented

Not
implemented

number
Picker

valueChange Control N/A N/A N/A

190  Client Framework Data Integration Guide



Table 22. iOS (continued)

tlType tlEvent only on
these Control
objects

tl JSON Object
type

iOS iOS Event iOS TL Short
Name

page ScreenView UIView
Controller

View Controller
InitWith
NibNamed

View Controller
InitWith Coder

View Controller
ViewWill Appear

LOAD View Controller
ViewDid Appear

View Controller
ViewDid Load

View Controller
ViewWill
Disappear

UNLOAD View Controller
ViewDid
Disappear

page
Control

Not
implemented

Control UIPageControl N/A N/A

radio
Button

click Control N/A N/A N/A

radio
Button

N/A

scroll scrollChange Control UIScrollView Not
implemented

Not
implemented

scroll UIScrollView

searchBox valueChange Control UISearchBar Not
implemented

Not
implemented

selectList valueChange Control UIPickerView Not
implemented

Not
implemented

selectList UIPickerView

slider valueChange Control UISlider No event name
but we are
handling clicks

No event name
but we are
handling clicks

slider UISlider

slider UISlider

stepper Not
implemented

UIStepper

tab
Container

tabChange Control UITabBar
Controller

Not
implemented

Not
implemented

IBM Tealeaf CX Client Framework Data Integration Guide  191



Table 22. iOS (continued)

tlType tlEvent only on
these Control
objects

tl JSON Object
type

iOS iOS Event iOS TL Short
Name

textBox textChange Control N/A TextField
DidBegin Editing

textBox N/A TextField
DidEnd Editing

textBox UITextField SecureText
FieldDid Begin
Editing

textBox N/A SecureText
FieldDid
EndEditing

textBox UITextField

textBox UITextView TextView
DidBegin Editing

TextView
DidEnd Editing

SecureText
ViewDid
BeginEditing

SecureText
ViewDid
EndEditing

timePicker timeChange Control N/A N/A N/A

toggle
Button

click Control UISwitch No event name
but we are
handling clicks

No event name
but we are
handling clicks

toggle
Button

UISwitch

Tealeaf JSON Schema - Values for Controls
Objects from different client frameworks have different names. Objects of the same type are mapped
internally to a tlType, so that an object of tlType=button is a button, no matter what the client
framework calls a button.

For each tlType entry, you can see how it is supported in each client framework and the meaning of the
value(s) as tracked in Tealeaf:

192  Client Framework Data Integration Guide



Ta
bl

e 
23

. T
ea

le
af

 J
SO

N
 S

ch
em

a 
- V

al
ue

s 
fo

r C
on

tr
ol

s

tlT
yp

e
UI

C
iO

S
An

dr
oi

d
An

dr
oi

d
AP

I L
ev

el
An

dr
oi

d
In

st
ru

m
en

t
Ke

y
Va

lu
e

lin
k

<a
>

N
/A

N
/A

te
xt

Te
xt

 b
ei

ng
 d

is
pl

ay
ed

be
tw

ee
n 

ta
g

ur
l

Ur
l o

f h
yp

er
lin

k

sl
id

er
<i

np
ut

>
UI

Sl
id

er
Ab

sS
ee

kB
ar

1
ab

st
ra

ct
 c

la
ss

m
ax

Va
lu

e
M

ax
im

um
 s

lid
er

 v
al

ue

va
lu

e
Cu

rr
en

t s
lid

er
 v

al
ue

se
le

ct
Li

st
<s

el
ec

t>
UI

Pi
ck

er
Vi

ew
Ab

sS
pi

nn
er

1
ab

st
ra

ct
 c

la
ss

te
xt

Te
xt

 b
ei

ng
 s

el
ec

te
d

N
ot

e:
 N

ot
 c

ur
re

nt
ly

su
pp

or
te

d 
in

 iO
S 

Lo
gg

in
g

Fr
am

ew
or

k.

te
xt

Bo
x

N
/A

N
/A

Au
to

Co
m

pl
et

e
Te

xt
Vi

ew
1

te
xt

bu
tt

on
<b

ut
to

n>
UI

Bu
tt

on
Bu

tt
on

1
te

xt
Te

xt
 ty

pe
d 

in
 te

xt
 b

ox

ca
le

nd
ar

N
/A

N
/A

Ca
le

nd
ar

Vi
ew

11
da

te
Da

te
 s

el
ec

te
d 

on
 c

al
en

da
r

ch
ec

kB
ox

<i
np

ut
>

N
/A

Ch
ec

kB
ox

1
te

xt
Te

xt
 o

f c
he

ck
ed

 it
em

te
xt

Bo
x

N
/A

N
/A

Ch
ec

ke
dT

ex
tV

ie
w

1
te

xt
Te

xt
 o

f c
he

ck
ed

 te
xt

bu
tt

on
N

/A
N

/A
Co

m
po

un
d 

Bu
tt

on
1

ab
st

ra
ct

 c
la

ss
te

xt
Te

xt
 o

f t
he

 la
be

l o
f t

he
bu

tt
on

co
m

m
an

d
<c

om
m

an
d>

N
/A

N
/A

te
xt

To
 b

e 
de

te
rm

in
ed

 it
, w

e
cu

rr
en

tly
 d

o 
no

t s
up

po
rt

 th
is

co
nt

ro
l

da
te

Pi
ck

er
N

/A
UI

Da
te

Pi
ck

er
Da

te
Pi

ck
er

1
da

te
Da

te
 b

ei
ng

 p
ic

ke
d

di
al

er
Fi

lte
r

N
/A

N
/A

Di
al

er
Fi

lte
r

1
te

xt
Te

xt
 th

at
 w

as
 ty

pe
d 

in
 d

ia
le

r
fil
te
r a

fte
r b

ei
ng

 p
ro

ce
ss

ed
.

te
xt

Bo
x

<i
np

ut
>

UI
Te

xt
Fi

el
d

Ed
itT

ex
t

1
te

xt
Te

xt
 ty

pe
d 

in
 te

xt
 b

ox

ga
lle

ry
N

/A
N

/A
G

al
le

ry
1

in
de

x
In

de
x 

of
 it

em
 s

el
ec

te
d

IBM Tealeaf CX Client Framework Data Integration Guide  193



Ta
bl

e 
23

. T
ea

le
af

 J
SO

N
 S

ch
em

a 
- V

al
ue

s 
fo

r C
on

tr
ol

s 
(c

on
tin

ue
d)

tlT
yp

e
UI

C
iO

S
An

dr
oi

d
An

dr
oi

d
AP

I L
ev

el
An

dr
oi

d
In

st
ru

m
en

t
Ke

y
Va

lu
e

sc
ro

ll
N

/A
N

/A
H

or
iz

on
ta

l
Sc

ro
llV

ie
w

3
x

Va
lu

e 
of

 th
e 

sc
ro

ll

y
Va

lu
e 

of
 th

e 
sc

ro
ll

bu
tt

on
<i

np
ut

>
UI

Bu
tt

on
Im

ag
eB

ut
to

n
1

im
ag

eN
a

m
e

N
am

e 
of

 im
ag

e 
be

in
g

di
sp

la
ye

d 
as

 a
 b

ut
to

n

te
xt

Bo
x

N
/A

N
/A

M
ul

tiA
ut

oC
om

pl
et

e 
Te

xt
Vi

ew
1

te
xt

Te
xt

 ty
pe

d 
in

 te
xt

 b
ox

nu
m

be
rP

ic
ke

r
N

/A
N

/A
N

um
be

rP
ic

ke
r

11
te

xt
Se

le
ct

ed
 n

um
be

r

ra
di

oB
ut

to
n

<i
np

ut
>

N
/A

Ra
di

oB
ut

to
n

1
te

xt
Te

xt
 o

f t
he

 v
al

ue
 s

el
ec

te
d

ra
di

oB
ut

to
n

<i
np

ut
>

N
/A

Ra
di

oG
ro

up
1

te
xt

Te
xt

 o
f t

he
 v

al
ue

 s
el

ec
te

d

sl
id

er
<i

np
ut

>
UI

Sl
id

er
Ra

tin
gB

ar
1

m
ax

Va
lu

e
M

ax
im

um
 s

lid
er

 v
al

ue

va
lu

e
Cu

rr
en

t s
lid

er
 v

al
ue

sc
ro

ll
<d

iv
>

UI
Sc

ro
llV

ie
w

Sc
ro

lle
r

1
no

t a
 v

ie
w

,
co

m
pu

tin
g 

in
ba

ck
en

d

x
Va

lu
e 

of
 th

e 
sc

ro
ll

y
Va

lu
e 

of
 th

e 
sc

ro
ll

sc
ro

ll
<d

iv
>

UI
Sc

ro
llV

ie
w

Sc
ro

llV
ie

w
1

x
Va

lu
e 

of
 th

e 
sc

ro
ll

y
Va

lu
e 

of
 th

e 
sc

ro
ll

se
ar

ch
Bo

x
N

/A
UI

Se
ar

ch
Ba

r
Se

ar
ch

Vi
ew

11
te

xt
Te

xt
 b

ei
ng

 s
ea

rc
he

d

sl
id

er
<i

np
ut

>
UI

Sl
id

er
Se

ek
Ba

r
1

m
ax

Va
lu

e
M

ax
im

um
 s

lid
er

 v
al

ue

va
lu

e
Cu

rr
en

t s
lid

er
 v

al
ue

se
le

ct
Li

st
<s

el
ec

t>
UI

Pi
ck

er
Vi

ew
Sp

in
ne

r
1

te
xt

Te
xt

 b
ei

ng
 s

el
ec

te
d

to
gg

le
Bu

tt
on

N
/A

UI
Sw

itc
h

Sw
itc

h
14

is
O

n
tr

ue
 o

r f
al

se
 v

al
ue

 if
 it

 is
 o

n

ta
bC

on
ta

in
er

N
/A

UI
Ta

bB
ar

Co
nt

ro
lle

r
Ta

bH
os

t
1

te
xt

Se
le

ct
ed

 ta
b

194  Client Framework Data Integration Guide



Ta
bl

e 
23

. T
ea

le
af

 J
SO

N
 S

ch
em

a 
- V

al
ue

s 
fo

r C
on

tr
ol

s 
(c

on
tin

ue
d)

tlT
yp

e
UI

C
iO

S
An

dr
oi

d
An

dr
oi

d
AP

I L
ev

el
An

dr
oi

d
In

st
ru

m
en

t
Ke

y
Va

lu
e

te
xt

Bo
x

<i
np

ut
>

UI
Te

xt
Fi

el
d

Te
xt

Vi
ew

1
te

xt
Te

xt
 ty

pe
d 

in
 te

xt
 b

ox

tim
eP

ic
ke

r
N

/A
N

/A
Ti

m
eP

ic
ke

r
1

tim
e

Ti
m

e 
th

at
 w

as
 p

ic
ke

d

to
gg

le
Bu

tt
on

N
/A

UI
Sw

itc
h

To
gg

le
Bu

tt
on

1
is

To
gg

le
d

tr
ue

 o
r f

al
se

 v
al

ue
 if

 it
 is

to
gg

le
d

ba
rB

ut
to

n 
It

em
N

/A
UI

Ba
r B

ut
to

nI
te

m
N

/A
te

xt
Ti

tle
 o

f b
ut

to
n 

ba
r s

el
ec

te
d

ite
m

ge
st

ur
e

N
/A

UI
G

es
tu

re
Re

co
gn

iz
er

an
dr

oi
d.

ge
st

ur
e

4
N

/A
Cu

rr
en

tly
 n

ot
 b

ei
ng

 tr
ac

ke
d

im
ag

e 
Pi

ck
er

N
/A

UI
Im

ag
eP

ic
ke

r
Co

nt
ro

lle
r

N
/A

te
xt

N
am

e 
of

 im
ag

e 
be

in
g

di
sp

la
ye

d

ge
st

ur
e

N
/A

UI
Lo

ng
Pr

es
s

G
es

tu
re

Re
co

gn
iz

er
an

dr
oi

d.
ge

st
ur

e
4

N
/A

Cu
rr

en
tly

 n
ot

 b
ei

ng
 tr

ac
ke

d

m
en

uI
te

m
N

/A
UI

M
en

uI
te

m
N

/A
te

xt
Ti

tle
 o

f m
en

u 
ite

m
 s

el
ec

te
d

na
vi

ga
tio

nI
te

m
N

/A
UI

N
av

ig
at

io
nI

te
m

N
/A

te
xt

Ti
tle

 o
f i

te
m

 s
el

ec
te

d

na
vi

ga
tio

nI
te

m
N

/A
UI

Pa
ge

Co
nt

ro
l

N
/A

pa
ge

Cu
rr

en
t p

ag
e 

be
in

g 
di

sp
la

ye
d

ge
st

ur
e

N
/A

UI
Pa

nG
es

tu
re

Re
co

gn
iz

er
an

dr
oi

d.
ge

st
ur

e
4

N
/A

Cu
rr

en
tly

 n
ot

 b
ei

ng
 tr

ac
ke

d

ge
st

ur
e

N
/A

UI
Pi

nc
hG

es
tu

re
Re

co
gn

iz
er

an
dr

oi
d.

ge
st

ur
e

4
N

/A
Cu

rr
en

tly
 n

ot
 b

ei
ng

 tr
ac

ke
d

ge
st

ur
e

N
/A

UI
Ro

ta
tio

nG
es

tu
re

Re
co

gn
iz

er
an

dr
oi

d.
ge

st
ur

e
4

N
/A

Cu
rr

en
tly

 n
ot

 b
ei

ng
 tr

ac
ke

d

st
ep

pe
r

UI
St

ep
pe

r
N

/A
va

lu
e

Va
lu

e 
of

 th
e 

st
ep

pe
r

ge
st

ur
e

N
/A

UI
Sw

ip
eG

es
tu

re
Re

co
gn

iz
er

an
dr

oi
d.

ge
st

ur
e

4
N

/A
Cu

rr
en

tly
 n

ot
 b

ei
ng

 tr
ac

ke
d

st
ep

pe
r

N
/A

UI
Ta

bB
ar

Ta
bW

id
ge

t
1

te
xt

Ti
tle

 o
f s

el
et

ed
 ta

b 
ite

m

IBM Tealeaf CX Client Framework Data Integration Guide  195



Ta
bl

e 
23

. T
ea

le
af

 J
SO

N
 S

ch
em

a 
- V

al
ue

s 
fo

r C
on

tr
ol

s 
(c

on
tin

ue
d)

tlT
yp

e
UI

C
iO

S
An

dr
oi

d
An

dr
oi

d
AP

I L
ev

el
An

dr
oi

d
In

st
ru

m
en

t
Ke

y
Va

lu
e

ge
st

ur
e

N
/A

UI
Ta

pG
es

tu
re

Re
co

gn
iz

er
an

dr
oi

d.
ge

st
ur

e
4

N
/A

Cu
rr

en
tly

 n
ot

 b
ei

ng
 tr

ac
ke

d

te
xt

Bo
x

<t
ex

t-
 a

re
a>

UI
Te

xt
Vi

ew
Ed

itT
ex

t
1

te
xt

Te
xt

 ty
pe

d 
in

 te
xt

 b
ox

ac
tio

nS
he

et
Ac

tio
nS

he
et

te
xt

Te
xt

 o
f t

he
 b

ut
to

n 
cl

ic
ke

d

bu
tt

on
In

de
x

In
de

x 
of

 th
e 

bu
tt

on
 c

lic
ke

d

al
er

tV
ie

w
Al

er
tV

ie
w

te
xt

Te
xt

 o
f t

he
 b

ut
to

n 
cl

ic
ke

d

bu
tt

on
In

de
x

In
de

x 
of

 th
e 

bu
tt

on
 c

lic
ke

d

196  Client Framework Data Integration Guide



IBM Tealeaf documentation and help
IBM Tealeaf provides documentation and help for users, developers, and administrators.

Viewing product documentation

All IBM Tealeaf product documentation is available at the following website:

Tealeaf Customer Experience Support

Use the information in the following table to view the product documentation for IBM Tealeaf:

Table 24. Getting help

To view... Do this...

Product documentation On the IBM Tealeaf portal, go to ? > Product
Documentation.

IBM Tealeaf Knowledge Center On the IBM Tealeaf portal, go to ? > Product
Documentation and select IBM Tealeaf Customer
Experience in the ExperienceOne Knowledge Center.

Help for a page on the IBM Tealeaf Portal On the IBM Tealeaf portal, go to ? > Help for This
Page.

Help for IBM Tealeaf CX PCA On the IBM Tealeaf CX PCA web interface, select
Guide to access the IBM Tealeaf CX PCA Manual.

Available documents for IBM Tealeaf products

The following table is a list of available documents for all IBM Tealeaf products:

Table 25. Available documentation for IBM Tealeaf products

IBM Tealeaf products Available documents

IBM Tealeaf CX • IBM Tealeaf Customer Experience Overview Guide
• IBM Tealeaf CX Client Framework Data

Integration Guide
• IBM Tealeaf CX Configuration Manual
• IBM Tealeaf CX Cookie Injector Manual
• IBM Tealeaf CX Databases Guide
• IBM Tealeaf CX Event Manager Manual
• IBM Tealeaf CX Glossary
• IBM Tealeaf CX Installation Manual
• IBM Tealeaf CX PCA Manual
• IBM Tealeaf CX PCA Release Notes

IBM Tealeaf CX Client Framework Data Integration Guide  197

https://www.ibm.com/mysupport/s/topic/0TO500000002XcOGAU/tealeaf-customer-experience?language=en_US&productId=01t50000004Y4AYAA0


Table 25. Available documentation for IBM Tealeaf products (continued)

IBM Tealeaf products Available documents

IBM Tealeaf CX • IBM Tealeaf CX RealiTea Viewer Client Side
Capture Manual

• IBM Tealeaf CX RealiTea Viewer User Manual
• IBM Tealeaf CX Release Notes
• IBM Tealeaf CX Release Upgrade Manual
• IBM Tealeaf CX Support Troubleshooting FAQ
• IBM Tealeaf CX Troubleshooting Guide
• IBM Tealeaf CX UI Capture j2 Guide
• IBM Tealeaf CX UI Capture j2 Release Notes

IBM Tealeaf cxImpact • IBM Tealeaf cxImpact Administration Manual
• IBM Tealeaf cxImpact User Manual
• IBM Tealeaf cxImpact Reporting Guide

IBM Tealeaf cxConnect • IBM Tealeaf cxConnect for Data Analysis
Administration Manual

• IBM Tealeaf cxConnect for Voice of Customer
Administration Manual

• IBM Tealeaf cxConnect for Web Analytics
Administration Manual

IBM Tealeaf cxOverstat IBM Tealeaf cxOverstat User Manual

IBM Tealeaf cxReveal • IBM Tealeaf cxReveal Administration Manual
• IBM Tealeaf cxReveal API Guide
• IBM Tealeaf cxReveal User Manual

IBM Tealeaf cxVerify • IBM Tealeaf cxVerify Installation Guide
• IBM Tealeaf cxVerify User's Guide

IBM Tealeaf cxView IBM Tealeaf cxView User's Guide

IBM Tealeaf CX Mobile • IBM Tealeaf CX Mobile Android Logging
Framework Guide

• IBM Tealeaf Android Logging Framework Release
Notes

• IBM Tealeaf CX Mobile Administration Manual
• IBM Tealeaf CX Mobile User Manual
• IBM Tealeaf CX Mobile iOS Logging Framework

Guide
• IBM Tealeaf iOS Logging Framework Release

Notes

198  Client Framework Data Integration Guide



Index

A
after every step 39
Android 39, 64
attribute 54

B
Browser Based Replay 39

C
client framework 39, 64
configuration 54
CX-Extended 39
cxOverstat 54

E
event 39, 54
Event Manager 39
Event Tester 39
eventing 39, 54
events 54
every step 39

H
hybrid 64

I
iOS 39, 64

J
JSON 39, 64

L
logging framework 64

N
native 64

R
reference 64
report group template 54

S
schema 64
step 39

step attribute 39, 54
Step-Based Eventing 39, 54

T
trigger 39

U
UI Capture 39, 64
UIC 39, 64
usability 54

Index  199




	Contents
	IBM Tealeaf CX Client Framework Data Integration Guide
	Work with client framework data in Tealeaf
	Client framework versions and licenses

	Data privacy in Tealeaf client frameworks
	General security features
	Privacy configuration for UI Capture
	Privacy configuration for Android Logging Framework
	Privacy configuration for iOS Logging Framework
	Data privacy in UI Capture
	Block array fields and mask types
	Field Masking
	Example of blocking data from transmission
	Default Configuration


	Tealeaf configuration for client frameworks
	Integrate client framework data into Tealeaf
	Prerequisites
	Required licenses
	Use groups and labels to store events and event-related objects
	Locating client framework sessions
	Identify client framework sessions
	Objects provided by Tealeaf for mobile native applications
	Sample values to create hit attributes for mobile web browsers
	Sample values to use to create hit attributes for any client framework
	Attributes and events used to detect sessions
	Sample values to create events to detect messages from mobile native application sessions
	Sample values used to detect mobile web sessions
	Tracking type of session
	Creating a session attribute to track session type across events
	Edit events to update the session tracking attribute
	Adding a dimension to be sourced from session attribute


	User Agent Detection
	Searching for client framework sessions
	Searching session using text
	Searching sessions using events
	Searching for mobile native application sessions from a specific type of mobile device
	Searching for mobile native application sessions from any device type

	Reviewing session search results
	Testing events to verify that they work as expected

	Use groups and labels to store events and event-related objects
	Collect environmental data with step-based events
	Creating a step attribute through BBR
	Creating an Event without a replay session
	Testing events to verify that they work as expected
	Saving your event to the server
	Creating dimensions from your mobile events
	Associating the dimension with the event
	Capturing dimension data



	Step-based eventing
	Step-based eventing
	Step-based objects
	Default step objects
	Step trigger types
	Considerations for using the After Every Step trigger

	Privacy

	Browser based replay and step-based events
	Navigable Pages List
	Viewing formatted JSON messages

	Event manager processing of step-based event objects
	Required access
	BBR step attribute context menu
	Creating a step attribute
	Data format
	Data availability
	Using data between step attributes
	Important notes on step-based eventing
	Capturing a specific value

	Creating a step event
	Triggers for step objects
	Triggers for compound events using step-based events as conditions
	Tracked Occurrences for step events
	Condition step
	Value step
	Other steps
	Advanced Mode

	Creating a dimension
	Support statement for creating step attributes and events in RTV
	In Event Tester

	Indexing and step-based events
	Reference information about BBR and Events

	Eventing for cxOverstat
	cxOverstat usability data
	Usability Eventing
	Usability eventing
	cxOverstat objects must be enabled
	Goal Based Dimensions
	Data storage
	Session
	Database


	cxOverstat step attributes
	cxOverstat events
	Primary Reporting Events
	Building block events

	cxOverstat dimensions
	cxOverstat report groups
	cxOverstat report group templates
	Tracking other usability events

	Default Tealeaf client framework event objects
	Tealeaf JSON object schema reference
	Design features
	Unified header format
	Session identifiers
	Count steps
	Performance measurement
	Previous state and current state tracking
	Exceptions
	Form field monitoring
	ScreenView features
	JSON data message format
	Message format
	Session messages
	Session messages schema
	Session messages example

	Client environment data
	Client environment schema
	Client environment example


	JSON message type schemas and examples
	Message header properties
	Message header properties schema
	Message header properties example
	Client state (Type 1) messages
	Client State (Type 1) message schema
	Client State (Type 1) message example

	ScreenView (Type 2) messages
	ScreenView (Type 2) message schema
	ScreenView (Type 2) message example

	Connections (Type 3) messages
	Connections (Type 3) messages schema
	Connections (Type 3) message example

	Control (Type 4) messages
	Control (Type 4) message schema
	Control (Type 4) message example

	Custom Event (Type 5) messages
	Custom Event (Type 5) message schema
	Custom Event (Type 5) message example

	Exception (Type 6) messages
	Exception (Type 6) message schema
	Exception (Type 6) message example

	Performance (Type 7) messages
	Performance (Type 7) message schema
	Performance (Type 7) message example

	Web Storage (Type 8) messages
	Web Storage (Type 8) message schema
	Web Storage (Type 8) message example

	Overstat Hover Event (Type 9) messages
	Overstat Hover Event (Type 9) message schema
	Overstat Hover Event (Type 9) message example

	Layout (Type 10) messages
	Layout (Type 10) message schema
	Layout (Type 10) message example

	Gesture (Type 11) messages
	Gesture (Type 11) message schema
	Gesture (Type 11) message example

	DOM Capture (Type 12) messages
	DOM Capture (Type 12) message schema
	DOM Capture (Type 12) message example

	GeoLocation (Type 13) messages
	GeoLocation (Type 13) message schemas
	GeoLocation (Type 13) message examples


	Differences between frameworks
	Tealeaf JSON properties
	charset
	clientState
	count
	dcid
	description
	deviceHeight
	deviceWidth
	error
	errorCode
	event (client state)
	event (control)
	eventOn
	<frames>.charset
	<frames>.host
	<frames>.root
	<frames>.tltid
	<frames>.url
	fromWeb
	height
	height (Client Environment)
	host
	href
	id
	id (target)
	idType
	innerText
	isParentLink
	libVersion
	line
	messageVersion
	name
	offset
	orientation
	pageHeight
	pageWidth
	position
	referrer (Screenview)
	referrer (webEnvironment)
	relXY
	root
	screenviewOffset
	scrollX
	scrollY
	serialNumber
	startTime
	subType
	target
	timezoneOffset
	type (message)
	type (event)
	type (target)
	url
	viewPortHeight
	viewPortWidth
	viewPortX
	viewPortY
	viewTime
	webviewId
	width
	width (Client Environment)
	Default client framework objects

	Tealeaf JSON schema - tlType
	Tealeaf JSON schema - tlEvent
	Event behavior
	UI Capture
	Android
	iOS

	Tealeaf JSON Schema - Values for Controls

	IBM Tealeaf documentation and help

	Index

