Client Framework Data Integration Guide

Contents

IBM Tealeaf CX Client Framework Data Integration Guide.......cccccovuvieiieiieiieccecnnnna 1

Work with client framework data in Tealeaf.........cuii i 1
Client framework Versions and LICENSES.c.ivciiriiriieniertente sttt see e sie e sressaeesaessbeesasessseenanenns 2
Data privacy in Tealeaf client frameWorks... ... e e e e 4
GENEIAl SECUILY TRATUIMES. . ciitiee ettt et ee e e etee e e ee e s bee e s ebee e ebaeesbeeesseeesnsaeesnsaeennsens 5
Privacy configuration fOr UL CaptUrE......cccueiccieeeeieeceieeeetee et e e teeeeiteeeeate e senteesenteesesteesntaesnssessnnseesnes 8
Privacy configuration for Android Logging FrameWorK........cceeecieeicieeiciee et eee e eee e s 9
Privacy configuration for iOS LOggiNg FrameWO K.cccueieceeieciieeeiee ettt e vee e e 11
Data Privacy iN UL CApUIE...cc i ciieecieeeeieeeeiteeectteeeteeeeteeeeteeesteeestaessbaeesssaessnsaeesnsasesssesessasesseeanns 13
Tealeaf configuration for client fFramEWOIKS........occveiecii i e 17
Integrate client framework data into Tealeaf........cviiiie i e 19
T Yo TV LT LSRR 19
REQUITEA LICENSES..ceiuiie ittt ettt et e e te e e et e e eeteeeesteesesteesestaesestaesastaeaastaeaasseeeansassasteesassaesnnes 19
Use groups and labels to store events and event-related 0bjects.......cccoeeecieieiiiicciieccieecee e, 20
Locating client frameWOrk SESSIONS.uiiciiiecieeeee et et e ere e e sree e e ee e e ae e e srae e ebeeeeseee s seeesnenesnnees 20
LT N oY oLl 1T =Yt o] TR 27
Searching for client frameWOrk SESSIONS......iiiiiiiecieccee et e e e e e ree e s bee e e ree e e reeeenaeas 28
Use groups and labels to store events and event-related 0bjects.......cccouveeciieeeciiicciiecciecceeeeeee, 33
Collect environmental data with step-based eVents.......ccoieeeiiicciicceceee e 33
StEP-DASEA BVENTING. ... eiiiiieeeceeeeeeeeee et et e e ree e et e e e be e e e bee e e bee e e baeeesteeensteeenseeeenteeenseeeennees 39
StEP-DASEA BVENTING ...eeiiieeeceece e et e st e e et e e e ta e e s bt e e e abe e e saeeesae e e saeeesseeenaaean 39
Y (T o R o T TY=Te [o] o =Y ot £ 42
Browser based replay and step-based EVENTS.......cccuiiiciiiiciiieeeeeee e a4
Event manager processing of step-based event 0bjeCtScceeeeiiieciiiicciiiccee e 46
Indexing and StEP-DasSed EVENTS.......cccuii i e et e e s bae e e bae e e rae e e aaeas 53
Reference information about BBR and EVENTS......ccccuiiieiiiiciieccee ettt 53
EVENTING FOr CXOVEISTAL ... uiiiiciiiectie ettt ettt e e e tte e et e e s at e e st tee s ateesnsee e sseeennsaeensseaennseean 54
CXOVErstat USAbility data.....cceeiciee e te e e ee e e e e e e e e e bee e e ree e s raeeenneas 54
CXOVErStat SEEP AttrIDULES. ..o et e e e e et e e e s te e e et e e e eabaeeenraeanns 57
CXOVRISTAL BVENTS.. ittt et e et e e et e e e e s et e e s sare et e s s mra e e e s e nneteeseenneeeas 57
CXOVEISTAt dIMENSIONS. ccuuiiiiiiiiieieeite st et este st e st ss e e s eesbeesbeesbeesbeesasessbaesssessbeesssesaseensaesssesnsesnsseens 59
CXOVEISTAt FEPOIT BIOUPS. . iiiiiiiiiiieiiiiiiiiirtteeeeeeeeeesssserrrrrteeeeeeesssssssssrsrrereaeeeessesssssssssssssesseeeeesssssssssnes 60
cxOverstat report SroUp tEMPLAtES.....ciiciii e et e e te e e ete e et e e e ate e e araeeans 60
Tracking other USability EVENTS......cocii it re e s eate e s bt e e sbae e sbaeessaeeeans 61
Default Tealeaf client framework event ObDJECES........iii i 61
Tealeaf JSON 0bject SCheMA rEfErENCE....c...uii i 64
DESIGN TRATUIES. . cuiieciee ettt ettt et et e et e et e e e atee s atee e sbeeesssaeassae s ssaeassseseanseeasseeennseeannseeans 64
UnNified Deader fOrMAt. . ittt s te st e s e s te e s e e s beesbaesabeesbaesaseebaesanesnsaenes 65
SESSION IENTITIEIS . ueiiiieieirie ettt ettt e st e st e s be e st e s beesatessbeessaesaseensaesaseensaesasesnseene 66
[O0eTUT) =3 (=] o3 TP O UUP PP RRUPPPPPRt 66
PerfOrmManCe MEASUIEMENT...icciiicierieeieerte et erteere st e sressteesteebeestae s bt esbaesaseebeesssessaesssesnsesnssessseens 67
Previous state and current state traCking.......cueeccieeeiiieeiieeeceeecee e ae e e e 69
D Col=Y o1 4o T3 T 70
o Tu g T 11=T 0o o a o] AT o] Lo RS 70
SCIEENVIBW FEATUMNES .. tiiieiiiieiie ettt ettt e s e s be e s te e sbe e beesabeesbeesabeesbeesasesabeesssesaseensaesnsenn 71
JSON data MeSSAZE fOIrMAL....ccuiiieiiiecieeecee e ee e e e e e see e e ae e e e beeeeateeensaeeeneeeennees 73
JSON message type sChemas and XamMPLES.......uiiciieieiieieiiie e eeee e eeteeeeree s reeeereeseaeeessaeennes 78
Differences betWeen framEWOIKS.......ccviiiriiiiiiiecieete ettt e e s e sre e steesbaeseseesbeesane s 106
Tealeaf JSON ProOPEItIES....uui i iie e ccee ettt e eete e e ete e e ee e e ree e seree e s seeesseeessasesseeesseeesseeeensens 107
Tealeaf JISON SChEMA = tlTY PO ..uiii ettt e et e e st e e e ae e e aae e s asaeesseeennneeaas 170
Tealeaf ISON SChemMa = tlEVENT......ii ittt sbe e st e e be e saaeebeenas 183

Tealeaf ISON Schema - Values for CONTrOLS.. ..o e e e e e e e e e e eeeeaaaaaaes 192
IBM Tealeaf documentation and NelP...... e et e e s e e e e 197
3 (=) R 199

IBM Tealeaf CX Client Framework Data Integration Guide

This guide provides information on the Tealeaf CX features that you use when you integrate your android,
i0S, and webview applications in Tealeaf. The guide provides tasks and information on the events and hit
attributes that you configure to log mobile session data.

Work with client framework data in Tealeaf

After you integrate one of the Tealeaf® client frameworks with your web application or mobile native
application, you configure Tealeaf to properly capture and process the data. You configure data privacy,
capture, events. The Canister, and TLI server.

The configuration process to work with client framework data in Tealeaf includes:

1. Configure data privacy for client frameworks

2. Install and implement the Tealeaf framework for capture
3. Configure Canister and TLI Server, if necessary

4. Configure Tealeaf Events

Configure data privacy for client frameworks

Configure data privacy rules to mask any data captured from the client frameworks, such as passwords,
that must not be submitted to Tealeaf for capture.

As part of any implementation through Tealeaf Professional Services, data privacy is configured and
applied for any data that is submitted from a monitored client application. Before you enable capture of
client framework data, verify that privacy configuration was properly enabled and configured.

Install and implement the Tealeaf framework for capture

After you integrated the framework with your application, you must configure the framework to capture
the data and configure Tealeaf and process the data.

Use the information in this guide...

IBM® Tealeaf CX Mobile Android Logging
Framework Guide

To install and implement data capture for...

native Android applications and for hybrid native
Android and WebView applications.

IBM Tealeaf CX Mobile iOS Logging Framework native iOS application and for hybrid native iOS and
Guide WebView applications.

IBM Tealeaf CX UI Capture j2 Guide

JavaScript WebView applications.

Other Tealeaf configuration

You might need to configure the Canister and TLI Server for your deployment:

Tealeaf area Description Applicability

Canister Safety Limits

To prevent runaway growth of
active sessions in the Canister,
Tealeaf imposes maximum limits
on duration, data size, and
number of hits for a session. If
any of these limits is exceeded,
the session is automatically

The Canister Safety limits apply
to client framework sessions,
including sessions from mobile
native applications.

» For mobile native application
sessions, data is submitted in

IBM Tealeaf CX Client Framework Data Integration Guide 1

Tealeaf area

Description

Applicability

closed in the Canister, even if the
visitor is still using the
application. Subsequent hits are
recorded to a new session.

compressed format to the PCA,
which writes values for the
request and response data size
before it was uncompressed. In
some cases, the uncompressed
text data can be 8x larger.

— If you enabled screen
capture through your client
framework, this data is
submitted in a compressed
file format (png) and does
not expand inside Tealeaf.

» Depending on the volume of
traffic, you might want to revisit
the Canister Safety Limits.

TLI Server

A TLI server can be optionally
deployed to store static content,
such as images, style sheets, and
JavaScript, onto a separate
server. The TLI server can also
manage versioning of this static
content so that the original
version of static content is
available for replay and auditing
purposes indefinitely.

« When a TLI server is deployed,
the TLI session agent scans
hits based on MIME type. The
agent stores content onto the
server that is based on a
configured set of types.

For mobile native application
sessions captured through a
Logging Framework, TLI does not
apply, since any captured screen
captures are embedded in the
session data. The captures are
not referenced by URL to an
origin server. Therefore, TLI
cannot be used to store versions
of this content.

TLI servers might be used with
mobile web deployments.

Configure Tealeaf Events

There are three things to keep in mind about events:

- Tealeaf provides a set of events and event-related objects for use in capturing and processing data from

client frameworks.

« Data that is submitted from a Tealeaf client framework is in the form of JSON-based messages. These
messages are processed and stored as individual steps in the session data. The step-based events and
hit attributes that you create from these messages perform like other Tealeaf objects, but they are

configured in a different manner.

« You might find it useful to work through a complete scenario in which you create step-based events and
hit attributes from client framework data and then integrate those event objects into your data from
your browser-based web application.

Minimum required versions

Client framework versions and licenses

This documentation applies to the these versions of Tealeaf software licenses:

2 Client Framework Data Integration Guide

License Minimum version

IBM Tealeaf cxImpact Release 8.5 or later

PCA PCA Build 3330

Earlier versions

If your system does not meet the minimum requirements, JSON-based processing within Tealeaf and
step-based eventing are not supported.

Refer to this documentation for the earlier versions of the Tealeaf client frameworks.

« IBM Tealeaf CX UI Capture for AJAX Guide
« Android Logging Framework Reference Guide
- i0S Logging Framework Reference Guide

Required licenses
To use any Tealeaf client framework, you must have the IBM Tealeaf cxImpact license.

IBM Tealeaf CX Mobile license is required for Android Logging Framework and iOS Logging Framework.

If you do not have CX Mobile

If you did not license IBM Tealeaf CX Mobile and you have the UI Capture j2 Framework, you can not
display mobile-specific features and events during replay.

Versions of UI Capture for Ajax

Depending on the licenses that you acquired, the following versions of UI Capture are available and
determine the method by which data is captured and submitted to Tealeaf for processing. These licenses
and their supported methods also determine the type of applications that IBM Tealeaf CX UI Capture for
AJAX is able to monitor.

IBM Tealeaf CX UI Capture for AJAX is only available to legacy users. New users must use IBM Tealeaf UI
Capture

For Release 8.5 and later, the JSON version of IBM Tealeaf CX UI Capture for AJAX is the only one that is
supported. For more information about support for the legacy XML version, contact Tealeaf http://
support.tealeaf.com.

License Method of Capturing and Monitored applications
Submitting

IBM Tealeaf CX only JSON fixed desktop web applications

IBM Tealeaf CX and JSON fixed desktop web applications

IBM Tealeaf CX Mobile mobile web browser applications

Versions of Logging Frameworks

For the Tealeaf Logging Frameworks, the following versions are available for this release. Logging
Frameworks require IBM Tealeaf CX Mobile license:

Depending on the licenses that you acquired, the following versions of the Tealeaf Logging Frameworks
are available and determine the method by which data is processed within Tealeaf.

IBM Tealeaf CX Client Framework Data Integration Guide 3

http://support.tealeaf.com
http://support.tealeaf.com

License Method of Description
Processing
Hits

IBM Tealeaf CX [Hit-splitting When data captured from the Logging Frameworks is processed in
Mobile only the Windows pipeline, messages are split into separate, individual
hits and added to the session data.

Hit-splitting is considered the legacy method of processing client
framework data. It is likely to be deprecated in a future release.

This method requires the deployment of a specific session agent in
the Windows pipeline to split hits

IBM Tealeaf CX |JSON Data is captured from the client frameworks and submitted in a

and compact JSON format. This data is made available in a more

IBM Tealeaf CX readable format through Browser-Based Replay, from which you can
Mobile create step-based events and attributes for tracking purposes.

This method is the current version of processing client framework
data and is available in Release 8.5 or later.

No additional configuration is required.

Data privacy in Tealeaf client frameworks

Tealeaf client frameworks provide multiple security features to ensure that sensitive application and user
data is safeguarded for transport or retained only in the client application. Using controls that you can
configure in each client framework, you can define the specific set of data that is blocked or masked from
transport to Tealeaf.

Sensitive data that was cleansed through a client framework never reaches Tealeaf, which ensures that
your customer's interactions are secure.

« Masks can be expressed as explicit strings, replacements for character types, or custom functions.
« Extra security features.

As part of any implementation through Tealeaf Professional Services, data privacy is configured and
applied for any data that is submitted from a monitored client application. Before you enable capture of
client framework data, verify that privacy configuration was properly enabled and configured.

If you have questions about how to implement data privacy in UI Capture, contact Tealeaf Professional
Services.

Data Masking and Blocking for Client Frameworks

Do not copy or transmit sensitive data when not necessary. To protect your users' privacy, do not log
sensitive data like passwords and credit card numbers. You can see the format this sensitive data without
seeing the data when troubleshooting. Removing the content of this information is called masking.

In Release 8.5, Tealeaf introduces step-based eventing, which simplifies and unifies event capture from
all client frameworks and enhances performance. Because of changes in how the data is bundled, Tealeaf
recommends applying data privacy through the individual client frameworks, instead of using the Tealeaf
server methods for data privacy.

Limitations

Any data that is masked or blocked by a Tealeaf Client Framework is never available within Tealeaf for
processing, search, and reporting.

4 Client Framework Data Integration Guide

For data submitted from a client framework in JSON format, privacy must be applied by using the client
framework's controls. Application of privacy controls to JSON-based data after it is submitted to Tealeaf
requires advanced abilities in Tealeaf privacy controls and regular expression development.

General security features

Security features apply to communications with the target page, local storage cache, logging levels, data
masking, and data blocking.

HTTPS communications with target page

Client frameworks provide a configurable means of submitting captured events to the Tealeaf target page
by HTTPS.

There is a performance overhead in sending data over HTTPS. The performance impacts depend on the
type of application, the network bandwidth, and the network load.

To deploy HTTPS communications, you might deploy any of the provided Tealeaf target pages and
configure on the server the directory permissions for HTTPS access.

This table lists what you do to deploy HTTPS communications:

Client Framework What you do

UI Capture To configure submitting by HTTPS for AJAX, you
must configure the t1secureurl property for the
Tealeaf target page.

No configuration is needed for UI Capture j2. The
server-side endpoint can manage both secure and
non-secure POSTs. The protocol of the POST is
determined by the protocol of the parent page.

Android Logging To configure HTTPS submissions, configure the
PostMessageUxl property in the
TLFConfigurableItems.properties file to
use the https:// protocol.

i0S Logging Framework To configure HTTPS submissions, configure the
PostMessageUrl property in the
TealeafBasicConfig.plist file to use the
https:// protocol.

Disabling local storage cache

If needed, some client frameworks can be configured to disable the local storage cache, which is used to
gather client events for submission to Tealeaf.

During cached operations, if the client framework is unable to connect to the Tealeaf target, events are
queued in a local memory buffer. If the buffer fills before the connection is restored, the last event that is
stored in the buffer is discarded.

« This buffer is cleared on restart or power down.

When the local storage cache is disabled, client events are sent as soon as they are detected by the client
framework. Since there is a data overhead for submitting a package of events, the data overhead
increases when sending a single event per package, which might affect client and network performance.

This table lists what you do to disable the local storage cache:

IBM Tealeaf CX Client Framework Data Integration Guide 5

Client Framework

What you do

UI Capture

For AJAX, the local storage cache size and
availability can be configured through the user's
browser.

UI Capture j2 does not support cached operations
and requires a live connection to the web server to
submit POSTs.

If a live connection to the web server that hosts the
Tealeaf target page is not available, captured Ul
data is discarded.

Android Logging

For the Android framework, you can configure local
cache settings, including disabling it altogether
using the HasToPersistlLocalCache setting.

iOS Logging Framework

For the iOS framework, you can configure local
cache settings, including disabling it altogether
using the HasToPersistlLocalCache setting.

Data masking

Each client framework enables the masking of sensitive data on the client before it is submitted to
Tealeaf. Through configuration, you can identify for the client framework the objects in the monitored
application that must be masked. For example, you can indicate that each numeral in a credit card field

must be replaced by an X:

credit_card_num=XXXX-XXXX-XXXX-XXXX

This table lists what you do to configure data masking:

Client Framework

What you do

UI Capture

For AJAX, in the TealeafClientCfg. js file, you
can specify the fields to mask with the
t1FieldBlock array. JISON message fields can be
specified by name, ID, or class name.

For UI Capture j2, use the UIC Configuration
Wizard to specify the user input fields to mask.
Input fields can be specified by HTML ID, name,
CSS class, or any custom attribute.

If a live connection to the web server that hosts the
Tealeaf target page is not available, captured UI
data is discarded.

Android Logging

Through the
TLFConfigurableItems.properties file, you
can configure the fields to mask, the masking
characters, and other features.

iOS Logging Framework

Through the TealeafBasicConfig.plist file,
you can configure the fields to mask, the masking
characters, and other features.

6 Client Framework Data Integration Guide

Data blocking

Data blocking removes all values that are related to the blocked field.

As needed, you can configure the data for individual items to be blocked altogether. If the data in the data
masking example was blocked, the submitted item would be:

credit_card_num=

JSON-based values are not stored in name/value format. As a result, the configuration that is required to
block JSON-based data is different. In the example below, the value of the textbox (myLoginID) must be

masked:
1
"type": 4,
"offset": 14953,
"screenviewOffset": 14953,
"count": 5,
"fromWeb": true,
"target": {
Pid": gy,
"idType": -1,
"name": "qty",
"t1Type": "textBox",
Il.typell: IIINPUTII’
"subType": "text",
"position": §
"width": 36,
"height": 21,
"relXY": "0.6,0.6"
}I
"currState": {
"value": "myLoginID"

3

{sParentLink“: false,
"prevState": §
“Value“: nn

§o
"dwell": 1609,
"visitedCount": 1

5,

Since this value is stored as the value of a JSON path, you must specify the path that uses a different

method of identifying its location in the JSON data.

Client Framework

What you do

UI Capture

For AJAX, data blocking is configured in a similar
manner to data masking.

For UI Capture j2 data blocking is configured by
specifying identifiers, the identifier type, and the
masking properties through the Configuration
Wizard.

If a live connection to the web server that hosts the
Tealeaf target page is not available, captured Ul
data is discarded.

Android Logging

The configuration is similar to configuring fields for
data blocking.

i0S Logging Framework

The configuration is similar to configuring fields for
data blocking.

IBM Tealeaf CX Client Framework Data Integration Guide 7

Privacy configuration for UI Capture

IBM Tealeaf UI Capture enables the blocking and masking of sensitive information within the client
browser, before the data is forwarded to IBM Tealeaf for capture, while it allows the data to be forwarded
to your web servers for normal processing. Sensitive data that was cleansed through UI Capture never
reaches IBM Tealeaf, which ensures that your customer's interactions are secure in UI Capture.

« UI Capture enables the blocking of user input data by element ID, name, or xpath.
« Masks can be expressed as explicit strings, replacements for character types, or custom functions.

« For more information about how data privacy is managed throughout the IBM Tealeaf system, see
"Managing Data Privacy in Tealeaf CX" in the IBM Tealeaf CX Installation Manual.

Note: If you have questions about implementing data privacy in UI Capture, contact IBM Tealeaf
Professional Services.

To specify a privacy rule, you must define:

 The type of identifier.
« The targets to which the rule applies.
« The type of masking to apply to the targets.

Specifying a privacy rule

In the configuration, a single privacy rule is specified within the privacy object by using the following
configuration template.

{
targets: [
1

id: "htmlid",
idType: -1

] r

maskType: 3

Specifying targets

To specify a target, you must specify the following properties.
Note: You can specify multiple id or 1dType targets for each masking rule.
Property
Description
id
The identifier for the target element. This value is specified according to the 1dType value.

In the configuration file, you can use a regular expression to specify matching identifiers. For example,
the following target configuration matches all HTML identifiers that end with _pii:

message: %
privacy: [

targets: [
%
id: § regex: ".+_pii$" %,
idType: -1
] r
"maskType": 3

8 Client Framework Data Integration Guide

idType
The type of identifier. The following types are supported:
Note: Values for idType are recorded as negative numbers.
e -1-HTMLID
e -2 - xpath identifier
e -3 -HTML name or other element attribute identifier

CSS selector
In the configuration file, you can also specify CSS selector values to match CSS elements for privacy
masking. In the example below, the designated privacy rule is applied to all password input fields:

message: 1
privacy: [

targets: [
"input[type=password]"
"ﬁaskType": 3
]
}
Specifying mask type

IBM Tealeaf UI Capture supports the following mask types (naskType values):

Table 1. Privacy configuration for UI Capture j2

Value Description Example Masked Example
1 Value is blocked and replaced | "HelloWorld123" '
by an empty string.
2 Value is masked with a fixed |"HelloWorld123" XXXXX
string of X's
3 Value is masked accordingto | "HelloWorld123" IXXXXXXXXXX999"

the following parameters:

« a lowercase letter is
replaced by x.

= an uppercase letter is
replaced by X.

« anumeralis replaced by 9.

« anon-alphanumeric value is
replaced by @.

4 Custom function "HelloWor1ld123 Depends on the defined

Note: A masking function function

must be defined as
maskFunction.

Privacy configuration for Android Logging Framework

In the Android Logging Framework, the settings to control data masking and blocking and the fields to use
to specify what is controlled are available in the TLFConfigurableItems.properties file.

The same method of blocking or masking is applied to all items configured to be controlled. You cannot
specify multiple methods of blocking or masking.

IBM Tealeaf CX Client Framework Data Integration Guide 9

Default Privacy Configuration for Android

In the default TLFConfigurableItems.properties file, the privacy configuration settings are
specified to mask data:

#Masking settings

HasMasking=true
MaskIdList=com.tealeaf.sp:id\/EditText*,com.tealeaf.sp:id\/login.password
HasCustomMask=true

SensitiveSmallCaseAlphabet=x

SensitiveCapitalCaseAlphabet=X

SensitiveSymbol=#

SensitiveNumber=9

In the configuration, privacy in Android is defined as follows:

« Since HasMasking=tzrue, privacy is enabled.

« Since HasCustomMask=tzue, a custom mask is applied. So, data masking is enabled. If it was false,
then it would use blocking.

- The masking characters are defined in the Sensitive settings.

The list of fields in the response data to which to apply the mask is defined in the MaskIdList, where
fields are delineated by a comma. In the default configuration, there are two fields, defined by using
regular expressions.

Field
Description

com.tealeaf.sp:id\/EditText*
For the specified namespace, privacy masking is applied to all fields whose id includes /EditText.
For Android applications, this configuration applies privacy to all fields where text is entered, which is
the safest, most conservative privacy configuration.

com.tealeaf.sp:id\/login.passwoxrd
For the specified namespace, privacy masking is applied any field that includes /login.passwozxd,
which might correspond to the identifier for the password field in your application.

In the above, the value before the colon in each regular expression (com. tealeaf. sp) identifies the
namespace to which the regular expression is applied.

Note: Since the default configuration does not specify the namespace of your Android mobile application,
privacy is disabled by default for applications that are monitored by the Android Logging Framework.

You can use these configuration settings or modify them to meet the requirements for your application.
The following sections describe data blocking and data masking in general, and examples are provided
later in the section.

Configuring data blocking

To configure data blocking in the Android Logging Framework, set the following values in the
TLFConfigurableItems.properties file:

Item ID
Value

HasMasking
Set this value to true.

MaskIdList
Comma-delimited ids or regular expressions to find ids.

HasCustomMask
Set this value to false.

SensitiveSmallCaseAlphabet
Do not specify a value.

10 Client Framework Data Integration Guide

SensitiveCapitalCaseAlphabet
Do not specify a value.

SensitiveSymbol
Do not specify a value.

SensitiveNumber
Do not specify a value.

When the HasCustomMask setting is set to false, the masking function returns an empty string, which is
inserted in place of the value to be masked.

For more information about these settings, see "Tealeaf Android Logging Framework Configuration File" in
the IBM Tealeaf Android Logging Framework Reference Guide.

Configuring masking

To configure data masking, you must set HasCustomMask to true and augment the example
configuration with the masking characters. These values are set in the
TLFConfigurableItems.properties file:

Item ID
Description

HasMasking
Set this value to true.

MaskIdList
Comma-delimited ids or regular expressions to find ids.

HasCustomMask
Set this value to false.

SensitiveSmallCaseAlphabet
This single value specifies the masking character that is applied to lowercase letters. It can be any
string value.

SensitiveCapitalCaseAlphabet
This single value specifies the masking character that is applied to uppercase letters. It can be any
string value.

SensitiveSymbol
This single value specifies the masking character that is applied to symbol characters. It can be any
string value.

SensitiveNumber
This single value specifies the masking character that is applied to numerals. It can be any string
value.

Privacy configuration for iOS Logging Framework

Masking functionality is configured with the Masking property in TealeafBasicConfig.plist inside
TLFResouzrces.bundle.

Applicable iOS controls

These iOS controls can be masked:
e UITextField

« UITextFieldSecure

« UITextView

e UITextViewSecure

« UIButton

« UILabel

e UISegmentedContzrol

IBM Tealeaf CX Client Framework Data Integration Guide 11

« UIAlertView
« UIAlertControl

Masking Levels

A masking level tells the framework how much of the content to preserve. There are two types of masking
levels: standard and custom.

The standard masking level replaces the original content with an empty string.

The custom masking level replaces the original content with different characters.

Table 2. How logging levels work

Log Level Description Text Entered by User Text After Privacy
Standard Data is blocked. "Password123" "
Custom Letters, numbers, and "Password123" IXXXXXXXXH#999"

symbols are masked by
using different
characters.

How to enable masking

Masking functionality can be configured with the Masking property of TealeafBasicConfig.plist
file inside TLFResources.bundle.

To set the masking level, set the corresponding values for HasMasking and HasCustomMask properties
of the Masking list.

Table 3. Setting masking levels

Masking Level HasMasking Property HasCustomMask Property
No Masking NO

Standard Masking YES NO

Custom Masking YES YES

To mask a control, add the regular expression under the MaskingIdList property under the Masking
property to match the ID of the control. All the controls whose IDs match with the regular expression
mask based on the configured masking level.

Example: The regular expression A9[0-9] [0-9] [0-9]$ matches all the controls whose IDs have four
characters, start with 9 and the remaining characters range from 0-9.

Custom masking

You can configure custom masking through the Sensitive dictionary in the
TealeafBasicConfig.plist file.

Table 4. Sensitive dictionary configuration

Configuration Description

capitalCaseAlphabet All uppercase letters are masked with the string
value for the capitalCaseAlphabet key. In the
example, the value is set to X. It is applied for
logging levels 2 and 3 in the example.

12 Client Framework Data Integration Guide

Table 4. Sensitive dictionary configuration (continued)

Configuration Description

smallCaseAlphabet All lowercase letters are masked with the string
value for the smallCaseAlphanet key. In the
example, this value is set to x.

Number All numerals are masked with the string value for
the number key. In this example, this value is set
to 9.

Symbol All non-alphanumeric characters, such as _ or @,

are masked with the string value of the symbol key.
In the example, this value is set to #.

Configuring data blocking
To apply data masking, set the standard masking level.

When the configuration is applied to the controls, no values are captured and transmitted to IBM Tealeaf.
No other configuration is required.

Migrating old masking functionality to new masking functionality

« Previous versions of the SDK support four levels of masking, which is no longer the case with the current
SDK version.

« The current version of the SDK supports only two levels of masking: standard and custom levels.

« The TagRegex property of TealeafBasicConfig.plist, which takes comma-separated regular
expressions, is replaced with the MaskIdList array property that takes regular expressions as
elements.

« The masking levels that used to be set on individual elements and controls (for example, adding key
UITextField with the value 3 under the Masking property would set UITextField with a masking
level of 3) is replaced with universal level masking across the application through the properties
HasMasking and HasCustomMask.

Data privacy in UI Capture

IBM Tealeaf CX UI Capture for AJAX enables the blocking and masking of sensitive information within the
client browser, before the data is forwarded to Tealeaf for capture, while allowing the data to be
forwarded to your web servers for normal processing.

Blocked data

Sensitive data that is cleansed through UI Capture never reaches Tealeaf, which ensures that your
customer's interactions are secure in UI Capture.

« UI Capture enables the blocking of user input data by element ID or name or both.
« Masks can be expressed as explicit strings, replacements for character types, or custom functions.

Specifying for JSON messages

Beginning in Release 8.5, the IBM Tealeaf CX platform supports the capture of JSON-based messages
from Tealeaf client frameworks, including a version of IBM Tealeaf UI Capture.

« Each JSON message corresponds to an individual step in the visitor's session. Multiple steps may exist
on a single hit, and you can create events for individual steps of a hit. See "Step-Based Eventing" in the
IBM Tealeaf Event Manager Manual.

IBM Tealeaf CX Client Framework Data Integration Guide 13

Block array fields and mask types

The data and masking functions to apply privacy are defined as objects in the t1FieldBlock array that
can be found in TealeafSDKConfig. js file of the UI Capture package. For each masking operation
applied through UI Capture, you must specify a different row in the t1FieldBlock array.

Field block array fields

For each masking operation applied through UI Capture, you must specify a different row in the
t1lFieldBlock array. This array contains these fields:

Field name Description

name A regular expression string that specifies the name
of the element on the page to which to apply
privacy.

You can specify names, IDs, or both within a single
record.

id A regular expression string that specifies the ID of
the element on the page to which to apply privacy.
You can specify names, IDs, or both within a single
record.

caseinsensitive When set to true, UI Capture attempts a case-
insensitive match the name or ID. For example,
MyAttribute and myattribute both match.

Mask types

Tealeaf provides three methods for masking or blocking sensitive data.

Mask Type |Description JavaScript Function
Preserve Use this mask type to specify the Tealeaf.Client.PreserveMask(element);
Mask mask to use for alphanumeric

characters. Mask is specified in the
tlPrivacyMask array.

Basic Mask | Use this mask type to mask data with | TeaLeaf.Client.BasicMask(element);
a pre-defined string, such as XXXXXX

Empty Mask [An empty mask removes all Tealeaf.Client.EmptyMask(element);
characters and does not replace
them.

Custom You can replace any of the other calls | N/A

Mask to Tealeaf masking functions with a

call to your own function.

These methods are available as JavaScript functions, which are referenced in the declarations of each
field inthe t1FieldBlock array.

Privacy mask

If needed, you can specify a privacy mask such that a different masking character is applied depending on
the type of character. The t1PrivacyMask is specified by using these fields:

Field Description

uppexChar This character is applied to uppercase alphabetical
characters. The default value is X.

14 Client Framework Data Integration Guide

Field Description

lowerChar This character is applied to lowercase alphabetical
characters. The default value is x.

numericChar This character is applied to numeric characters.
The default value is 9.

symbolChar This character is applied to symbol characters. The
default value is #.

Field Masking

You can use UI Capture to add a mask over sensitive data that must be validated on the server. In the
following example, credit card-related fields are masked by dummy characters to indicate that the data
entered. After the changes are made to TealeafClientCfg. js, the dummy field values are submitted
to the server and processed by Tealeaf.

Mask fields by using names and IDs

You can specify names and IDs by listing explicit values or by using regular expressions. Based on the
evaluation of these expressions, the specified privacy operation can be applied to one or more page
elements, including all page elements.

Inthe t1FieldBlock data array, you reference fields by their unique identifiers (IDs). If IDs are
unavailable, you can reference fields by name, which might not be unique.
To apply a privacy operation to a single named field:
i"name": "creditcard", ...
To apply a privacy operation to multiple named fields, separate the fields by the pipe character (|):

i"name": "creditcard|password", ...

You can also apply regular expressions to match names or IDs based on patterns. Suppose that you
defined page identifiers that require UI Capture privacy to have pvt prefix in their ID value. To apply
privacy, use the following regular expression as the value for the ID:

{“id“: uAthu' .

You can also specify the same privacy masking operation for names and identifiers in a single record. In
this example, two regular expressions are specified for matching names and IDs. These expressions
match all values for the name and ID attributes, effectively blocking all element values from the page.

The result is that everything that is monitored by UI Capture is masked or blocked, based on the rule.
{“id“: II.*II' IlnameII: II.*II'

Mask fields by using ClassName

You can specify the fields to mask based on the CSS class for the fields. This method allows global
masking of any field that is identified by using a common class.

IBM Tealeaf CX Client Framework Data Integration Guide 15

Mask fields by using names and IDs

You can use regular expressions to specify the classname. In this example, all fields with CSS classes
that have the priv prefix are masked.

i"classname": "priv.x", ...

Specifying values for name or id is not required.

Function declarations

The masking function API is:
string mask(DOMNode element);

Where:
« element is the DOM node with the matching name or ID attribute as specified in the masking record.
- stringis the masked return value that is sent by Tealeaf in the UI POST.

Limitations

UI Capture can only mask or block data that is collected through the IBM Tealeaf UI Capture. This library
does not provide access to data contained on the page, which is not managed by the library. The following
examples cannot be made private by UI Capture:

« Avisitor ID embedded in the HTML of the page

- Astatic element that is not captured by the library, which contains the visitor's account balance or
Social Security number, or similar.

These types of sensitive data must be masked or blocked after they reach Tealeaf.

Performance

Care must be taken to keep the masking records to a minimum. Only use optimized regular expressions
and optimized code in your custom functions. A poorly configured privacy mask can have adverse impacts
on the performance of the page.

Example of blocking data from transmission
You can remove the data from being submitted to the server.

This example blocks data by referencing the EmptyMask function in the declaration:

i"id": "myElement", "caseinsensitive": false, "mask":
function () { return TealLeaf.Client.EmptyMask.apply(this, arguments); %%

Default Configuration
This is the default specification for t1FieldBlock that is provided by Tealeaf.

The default configuration does not perform any masking. You must modify this code to support your
privacy requirements before you deploy the IBM Tealeaf UI Capture.

tlFieldBlock: [
/* Sample block rules:
// Mask all field names that have "creditcard" or "password"
// substrings using the PreserveMask() function.
i"name": "creditcard|password", "caseinsensitive": true, ‘"mask":
function ()
i return TealLeaf.Client.PreserveMask.apply(this, arguments); %

16 Client Framework Data Integration Guide

// Mask all field ids that match pvt®, pvtl ... pvt9 using
// the EmptyMask() function.
f"id": "Apvt[0-9]1%", "caseinsensitive": true, '"mask":
function ()
i return TealLeaf.Client.EmptyMask.apply(this, arguments); %
// Paranoid mode: Mask all name and id values with the
// BasicMask() function.
$'id": ".x", "name": ".x", "caseinsensitive": false, "mask":
function ()
i return Tealeaf.Client.BasicMask.apply(this, arguments); %%
*/
i

// The mask used by the PreserveMask() masking function.
tlPrivacyMask: {

"upperChar": X",
"lowerChar": x",
"numericChazr": "9",
"symbolChar": "#"

Tealeaf configuration for client frameworks

You do several tasks to configure Tealeaf for client frameworks. Some of the tasks are done on the client
frameworks and some on the server.

Process
When you configure Tealeaf and the client frameworks, you:
1. Install and implement the client framework, Android, iOS, or UI Capture

2. Configure session agents
3. Configure PCA

Client framework tasks
Use the client framework documentation to configure Tealeaf for client frameworks:

1. Deploy and configure the client framework.

2. Set up data privacy in the client framework.

3. Configure sessionization on the client framework.
4. Configure sessionization on the server.

5. Configure the target page.

Windows pipeline, Reference and session agent, and WURFL

When data is captured and passed through Tealeaf, session information is analyzed and sometimes
transformed in the Windows pipeline. The pipeline is a series of configurable session agents. Each of the
agents performs one or more operations on the hit data before the agent passes the hit to the next agent
in the sequence.

Whether a mobile native application submits a user agent string is determined by the developer of the
application. To facilitate user agent detection, the Tealeaf client frameworks for Mobile App automatically
submit a user agent string and other device properties, which the Tealeaf Reference session agent uses to
populate the same values in the request that are used by Mobile web.

The Tealeaf Reference session agent is deployed in the default pipeline to verify user agent information
that is submitted by the client with each request. When a web browser or fixed browser submits a request
to a server, it typically includes a string to identify itself. This string is used by the Tealeaf Reference
session agent to perform lookups against the WURFL public standard, which identifies mobile user
agents. When WURFL is downloaded from its source and deployed, more useful information about the

IBM Tealeaf CX Client Framework Data Integration Guide 17

browser, operating system, and platform is extracted based on the user agent and inserted into the
request of the hit.

Session agent configuration

Windows pipeline session agent configuration varies based on how data is submitted and captured. Most
of the frameworks do not require additional configuration. This table lists the frameworks and whether
additional configuration is needed:

Framework Configuration

Mobile native applications For mobile native applications that use the step-
based method of submitting and capturing data, no
additional configuration is required in the Windows
pipeline.

For mobile native applications that use the legacy,
hit-splitting method of processing data inside of
Tealeaf, some session agents must be deployed in
your Windows pipeline.

UI Capture If you are using the JSON version of IBM Tealeaf UI
Capture, no additional configuration in the
Windows pipeline is required.

For mobile web applications captured by UI
Capture, deploy the Tealeaf Reference session
agent to capture user agent information for mobile
web browsers. The Tealeaf Reference session
agent is included by default in the Windows
pipeline.

PCA Configuration

By default, the IBM Tealeaf CX Passive Capture Application is configured to enable the capture of the
JSON mimetypes that is submitted by the Tealeaf client frameworks. Before you continue, verify that
these types are enabled for capture.

Each Tealeaf Logging Framework might be using a different content type for submitting events for capture
to Tealeaf. Be sure to review and verify the content type for each deployed client framework.

Framework Required Content Type to Capture

IBM Tealeaf UI Capture [application/json

Android Logging text/json
Framework

iOS Logging Framework |text/json

Next steps

After the PCA was configured to capture client framework data and the client framework was properly
deployed, data is being captured by IBM Tealeaf.

After all configuration is complete, you can test for the presence of client framework data and define IBM
Tealeaf events and event-related objects to enable search and replay of sessions and to provide insightful
analysis of your applications.

18 Client Framework Data Integration Guide

Integrate client framework data into Tealeaf

The Tealeaf client frameworks let you capture user interface events and application events from the
visitor's client, which might not generate a full request from the web application. These client frameworks
are Javascript-based toolkits that are deployed through your web application and installed in the visitor's
client.

Without interrupting the customer experience, the client frameworks monitor the client application for
events of interest and transmit those events to Tealeaf for capture and processing. Through the client
frameworks, you can apply the same level of monitoring on your mobile or web applications as you can
through the browser-based applications that are monitored by IBM Tealeaf cxImpact.

Before you begin, one or more of the Tealeaf clients frameworks must be licensed, deployed, and
configured in your web application environment. Tealeaf client frameworks require the IBM Tealeaf CX
Mobile license.

General workflow
The general workflow for integrating client framework data into Tealeaf is:

1. Locate client framework sessions, including differences in how the data is posted.

2. Identify user agent information that is provided by the client framework.

3. Create step attributes from them to gather user agent data from the logging framework(s).
4. Create events from the step attributes.

5. Integrate events into existing reporting.

Prerequisites

Before you integrate client framework data into Tealeaf you must install software, make sure that your
accounts have access to the TealeafTealeaf components, configure one of the client frameworks, and
enable and configure parsers.

List of prerequisites
Before you integrate client framework data into Tealeaf you must:

1. Install IBM Tealeaf CX Release 8.4.1 or later.
2. Verify that your Portal account has access to the:

- Tealeaf Event Manager. To access the Tealeaf Event Manager, select Configure > Event Manager
from the Portal menu.

« Tealeaf Report Builder. To access the Tealeaf Report Builder, select Analyze > Report Builder from
the Portal menu.

3. Integrate one of the client frameworks is integrated with your Tealeaf application.

4. Verify that extended user agent parsing is enabled. Extended user agent parsing is enabled by default
through the Tealeaf Reference session agent, which is required in most pipelines. Use TMS to verify
that extended user agent parsing is enabled.

5. Configure user agent parsing, if necessary.

6. For UI capture only, if you deployed a version of your web application for mobile web browsers, deploy
the WURFL public standard to enable detection of mobile-based user agents.

7. For UI capture only, after you enabled user agent detection, configure events to detect mobile device
characteristics that are based on the captured and verified user agent information.

Required licenses

Tealeaf client frameworks can be deployed to capture data from the types of applications that are listed
and submitted to Tealeaf for processing. Before you begin, it is assumed that you installed and

IBM Tealeaf CX Client Framework Data Integration Guide 19

successfully deployed one of the Tealeaf client frameworks and that you verified client framework data is

being captured by Tealeaf.

Framework

Required license

UI Capture j2

CX-Extended platform license

Tealeaf Android Logging Framework

CX-Extended platform license
Tealeaf CX Mobile license

Tealeaf iOS Logging Framework

CX-Extended platform license
Tealeaf CX Mobile license

Use groups and labels to store events and event-related objects

Before you begin building events and event-related objects, you should consider creating groups and
labels to store them. You may build hit attributes, events, session attributes, and dimensions, so you
should try to find ways to create consistent labels in each of the appropriate tabs in the Event Manager.

This table shows lists and describes one set of labels and groups for client framework data:

Label/Group

Description

Source - UIC

Event objects created to track data from Tealeaf
IBM Tealeaf UI Capture

Source - Android

Event objects created to track data from the IBM
Tealeaf Android SDK

Source i0S

Event objects created to track data from the IBM
Tealeaf iOS SDK

Mobile

Source

Event objects created to track data from mobile
devices in general

Locating client framework sessions

This section describes the identifying markers in client framework sessions and the objects that are

provided by Tealeaf to locate these markers.

Identify client framework sessions

When client framework messages are received by the PCA, they are examined for the source of the
message. Based on the source that is detected in the x-tealeaf headerin the raw request, the PCA
inserts header values for each client framework as a name-value pair in the [env] section of the request:

Client Framework

Name/Value Example

IBM Tealeaf UI Capture (JSON)

HTTP_X_TEALEAF=device (uic)
Lib/2012.06.01.1.3S

This header value is inserted only if UI Capture is
submitting JSON-based data.

20 Client Framework Data Integration Guide

Client Framework Name/Value Example

IBM Tealeaf UI Capture (XML)

HTTP_X_TEALEAF=ClientEvent

For IBM Tealeaf UI Capture solutions that use XML-
based messaging, you can locate sessions by searching
for this data in the request or for events that you create
to identify this exact name-value pair in the request.

Android Logging Framework

HTTP_X_TEALEAF=device
(android) Lib/0.0.10

iOS Logging Framework

HTTP_X_TEALEAF=device
(i0S) Lib/8.5.4.1

In the above name-value pairs, the value after Lib/ indicates the version number of the client framework
that captured and submitted the hit.

Note: Tealeaf provides some event objects for tracking the above items. These items are described
below. If you want to create extra step attributes and events from the HTTP_X_TEALEAF request
variable, you must create them manually through the Event Manager. When these objects are created
through the recommended method in BBR, the Event Manager identifies them as existing in the provided
set of event objects. You can work around this safeguard by manually creating them.

Objects provided by Tealeaf for mobile native applications
For mobile native applications, Tealeaf provides a set of objects to help integrating the data into your
Tealeaf data set.

Mobile Device objects

This table lists and describes the objects provided for mobile apps:

Sequence Object Description

1 Mobile Device Type hit attribute The Mobile Device Type hit attribute
that is provided by Tealeaf is designed to
identify hits that was submitted from the
mobile client frameworks.

Note: This hit attribute filters out values
that were captured from the IBM Tealeaf Ul
Capture solution that were posted in the
HTTP_X_TEALEAF header. Values that are
reported in this hit attribute are for mobile
native applications only.

« A hit attribute is a Tealeaf event-related
object that checks for patterns of text or
specific strings in each request that
passes through the event engine.

« Hit attributes are defined in the Event
Manager, which is available through the
Tealeaf Portal.

IBM Tealeaf CX Client Framework Data Integration Guide 21

Sequence Object Description

2 Mobile Device event This event that is provided by Tealeaf is
triggered if the Mobile Device Type hit
attribute is found. The recorded value is the
value of the hit attribute, which is the value
between the parentheses of the request
variable.

3 Mobile Device dimension This dimension is recorded from the last
value in the session for the Mobile
Device event. Dimensions are defined in
the Event Manager, which is available
through the Tealeaf Portal.

4 Traffic Type dimension When the value for the HTTP_X_TEALEAF
variable includes 10S or android, the
value for the Traffic Type dimensionis
set to MOBILE_APP. In this manner, you
can segment reporting based on whether
the type of traffic is sourced from a mobile
native application.

Sample values to create hit attributes for mobile web browsers

Sessions that are sourced from mobile web browsers are captured by Tealeaf with the IBM Tealeaf UI
Capture client framework. Tealeaf provides objects to detect and capture data from mobile web browser
sessions.

Values for a hit attribute to detect sessions sourced from UI Capture

To detect mobile native sessions that were captured from IBM Tealeaf UI Capture, you need to detect for
the UIC value in the HTTP_X_TEALEAF request variable.

Below, you can see the values that you need to assign for the Start Tag and End Tag for this hit attribute:

- Start Tag:

\r\nHTTP_X_TEALEAF=device (UIC)

- End Tag: Leave this blank.

This hit attribute applies to Release 8.5 or later. If you are using the legacy XML version of IBM Tealeaf UI
Capture, the value of the hit attribute (after the equals sign) must be ClientEvent exactly.

This condition identifies that the hit was sourced from IBM Tealeaf UI Capture.

You should create an event specifically to detect for the presence of this value in the CUI Hit attribute.
If this value changes in the future, you can update all of your event configurations by updating the
detecting event.

Values for a Mobile Web Hit event

IBM Tealeaf UI Capture can be used to track client activities for fixed browser and mobile web
applications. Mobile web applications are applications that are served to mobile clients that are
experienced through a web browser on the client device. You might find it useful for reporting purposes to
create a hit attribute and event to detect IBM Tealeaf UI Capture sessions that were served from a mobile
client browser.

When you create your event, you must add a condition that identifies the hit as being sourced from a
recognized mobile device and submitted through IBM Tealeaf UI Capture.

22 Client Framework Data Integration Guide

The Traffic Type attribute is used to detect the type of traffic, whether it is sourced from a fixed
browser, mobile browser, or some form of bot traffic. When the value of this attribute is MOBILE, the hitis
sourced from a mobile web browser, which also means that the session was captured by IBM Tealeaf UI
Capture.

When the attribute is added, your conditions for your event should look like:

Traffic type: First Value Equals MOBILE

The value of the hit attribute must be MOBILE exactly. Case-sensitive matching is not required.

The event must be configured to be triggered on a hit trigger (not a session trigger) and all event
conditions must be met for the event to fire.

This event is now configured to fire if the hit was received from IBM Tealeaf UI Capture from a mobile web
browser session.

Use this event as a condition to create other events, making sure that in most cases, for proper function of
the event, the hit conditions are configured so that all of the conditions are met.

Sample values to use to create hit attributes for any client framework
Hit attributes are defined in the Event Manager, which is available through the Tealeaf Portal.

CUI Hit attribute

The CUI Hit hit attribute checks for the presence of the HTTP_X_TEALEAF request variable and, if
found, gathers the value. This request variable indicates that it was submitted from one of the client
frameworks. The CUI Hit has these characteristics:

1. Name: CUI Hit

. Description: Hit count, as reported from client user interface. Requires Tealeaf UI Capture.
. Active: Selected

. Search in: Request

. Use: Start Tag/End Tag

. Start Tag:

oA W

\T\n\HTTP_X_TEALEAF=

7. End Tag:

\r\n\

8. Case sensitive: Selected
9. Encoding: UTF-8
10. Change Case: No change

If the CUT Hit request variable is present, then the value of the request variable is stored as the hit
attribute value.

The CUI Hit hit attribute is configured to:

« Searchin the request
« Search using a start tag and an end tag.

— Start Tag:

\r\n\HTTP_X_TEALEAF=

- End Tag:

IBM Tealeaf CX Client Framework Data Integration Guide 23

\r\n\

In the Start and End tags, the string \xr\n is used to reference a return/newline that signals the ending of
one line and the beginning of a new one in captured data. When the request is scanned and the \r
\NHTTP_X_TEALEAF= string is detected, all values between that string and the end tag string (\r\n,
which indicates the end of the line) are gathered as the value for the hit attribute CUT Hit.

Whenever CUI Hit is used for other event objects evaluated on the same hit, the value captured by the
hit attribute is value that is used.

When the next hit arrives in the Event Engine, the hit attribute is retested, and potentially a new value is
stored in CUT Hit for reference.

Differences from Mobile Device hit attribute

You might notice that the Mobile Device hit attribute is also scanning the HTTP_X_TEALEAF request
variable.

« The Mobile Device hit attribute is interested in only the values between the two parentheses in the
request value.

« The CUI Hit hit attribute gathers all values until the end of the line. Therefore, it gathers a much wider
data set and can be used as a test of whether the hit was sourced from any Tealeaf client framework.

Attributes and events used to detect sessions

After you create event objects, you can see how sessions sourced from each framework is detected within
Tealeaf. Tealeaf uses the combination of hit attributes, events, and dimensions to detect the source of the
session captures.

Source of Session | Hit Attribute Event Dimension Session

Capture Attribute

Android LF Mobile Device Type Mobile Device Mobile Device none

iOS LF Mobile Device Type Mobile Device Mobile Device none

UIC for JSON Create a hit attribute to none none none
detect sessions sourced
from UI capture.

UIC for XML CUI Hit (value must be none none none
ClientEvent)

Sample values to create events to detect messages from mobile native application sessions
Based on the event objects provided and that you created, you can detect for sessions that were sourced
from one of the mobile client frameworks or from a specific client framework

Example event to detect messages from any mobile client framework

If you are creating events to monitor data from any mobile client framework, use the Mobile Device
Type hit attribute as an event condition. Set the operator to be Hit Attribute Found

In this example, the event conditions are defined to detect for the presence of the Mobile Device
Type and a user-defined attribute, Mobile Alert Message. When both attributes exist, the event fires
when a mobile alert message is sourced from one of the logging frameworks for mobile devices.

Example event to detect a specific mobile client framework
You can also create events to track activities from a specific client framework.

For example, suppose you want to monitor mobile alert messages from your iOS application,
independently of those of a deployed Android application. In this case, you define your event conditions
to detect for the presence of a specific value for the Mobile Device Type:

24 Client Framework Data Integration Guide

You may want to create an event that detects for the specific value for the Mobile Device Type hit
attribute and records that value. You might name that event something like Mobile Session - ios.

Sample values used to detect mobile web sessions

Some sessions that are initiated by mobile devices might not be captured by the android or iOS
frameworks. Depending on your web application, it might be possible for visitors to interact with your web
application using a mobile web browser. Sessions that are initiated in this manner are not detected and
processed through the Logging Frameworks.

These types of interactions apply to IBM Tealeaf CX Mobile for Mobile Web.
Capture and detection of sessions that are sourced from mobile web browsers requires UI Capture.

Sessions from mobile web browsers that are captured from the IBM Tealeaf UI Capture solution are
detected by extended user agent parsing, which generates the data to report them as MOBILE sessions in
the Traffic Type hit attribute, which is the source for the Traffic Type dimension.

This event might already be created.

Tracking type of session
There are three sample events to identify sessions that originate from a Tealeaf client framework-enabled
application. Two are provided by Tealeaf and one you create.

this table summarizes events that you can use to eidentify sessions that originate from a Tealeaf client
framework-enabled application:

Table 5. Tracking type of session

client submitted |HTTP_X_TEALEAF |Detected value Capturing event
framework |datatype value

UIC for XML | XML ClientEvent ClientEvent CUI Hit

UIC for JSON |JSON) UIC You must create an event.
device (UIC)

Lib/2012.06.
01.1.3S

Android JSON Android Mobile Device

device
(Android)
Lib/0.0.10

i0S JSON device (i0S) i0S Mobile Device

Lib/8.5.4.1

For Release 8.4, the mobile logging frameworks used the HTTP_X_TEALEAF_DEVICE request variable,
which populated the Mobile Hit hit attribute. For Release 8.5 and later, this attribute is no longer used.

Creating a session attribute to track session type across events
To track the type of session across all of your events, create a session attribute.

About this task
Call the attribute CUI Session Type.

Procedure

1. In the Event Manager, click the Session Attributes tab.
2. Click New Session Attribute....
3. Key Properties:

Property
Description

IBM Tealeaf CX Client Framework Data Integration Guide 25

Name
Use CUI Session Type or similar.

Description
Enter something similar to the following: Source of session if it is captured from
the client using a Tealeaf client framework.

Populated By
Select one of the events that you created.

4. Click Save Draft.

Results

The session attribute is saved.

Edit events to update the session tracking attribute
Modify the events that you want to update the session tracking attribute. If you want mobile session
events to update this attrbitute,

Procedure
1. Click the Events tab.
2. Right-click one of the events you created and select Edit Event....
3. Add the attribute you created to the lists of attributes that this event updates:
a) Click the More Options tab.
b) Next, to Update Session Attribute, click Select?.
c) Select the session attribute that you just created.
d) Click Save Draft.
4. Repeat these steps for the other events you created, for example the mobile .
5. To save all changes, click Save Changes.

Results

When the created events are triggered, they record the value of the event, which is the identifier for the
type of CUI session, to the session attribute.

Adding a dimension to be sourced from session attribute

Whenever an event is triggered, the session attribute is updated, and any dimensions associated with the
event are updated. A dimension is a piece of contextual information that is recorded when an event fires.
You can use dimensions to create reporting filters to segment reporting along the type of client
framework session.

About this task

Because the events are populated only with values that are defined by the Tealeaf client frameworks, you
create the whitelist to capture these values. These values should be the same as those recorded for the
HTTP_X_TEALEAF request variable.

Procedure

1. Click the Dimensions tab.

2. Click New Dimension.

3. For the Populated By option, select the session attribute you created.
4. Click the Advanced Options caret.

5. For Values to Record, select Whitelist Only.

6. Click Edit Whitelist?

26 Client Framework Data Integration Guide

7. Specify the values in the whitelist.

8. Save the whitelist.

9. Populate the other dimension properties as needed.
10. Save the dimension as a draft.
11. Save changes to the server.

Results

This dimension can be associated with other events to segment reporting along the type of client
framework session.

User Agent Detection

You can configure Tealeaf to detect and capture user agent information that is submitted from the client
application.

User agent standards

This table lists and describes the user agent standards that Tealeaf uses. Standards are listed by
application type:

Application type User agent standard Description

desktop browser browscap Tealeaf uses the browscap
standard for capturing user agent
information that is submitted
from desktop browsers

mobile desktop browser WURFL IBM Tealeaf CX Mobile can use
the WURFL public standard for
capturing user agent information
that is submitted from mobile
web browsers

mobile native application n/a User agent information is
submitted in a consistent form by
the client framework monitoring
your mobile native applications.

One of the functions of the Tealeaf Reference session agent is to perform lookups against these public
standards for user agent information that is submitted from the client.

The Tealeaf Reference session agent must be included in every Windows pipeline in which session data is
processed.

User agent detection for UI Capture

Since the IBM Tealeaf UI Capture solution is provided for applications being served to fixed desktop
browsers or mobile web browsers, user agent information is available as part of regularly submitted
requests from these browsers, using Browscap or WURFL.

Tealeaf reference dimensions from IBM Tealeaf UI Capture solutions is written to different values in the
request.

User detection and mobile native applications

Typically, individually mobile applications send a unique user agent string that is not known to any public
repository, or they may not send a user agent at all. As a result, user agent detection for mobile native
applications cannot rely on WURFL, Browscap, or other public standard.

IBM Tealeaf CX Client Framework Data Integration Guide 27

HTTP_X_TEALEAF header and mobile native applications

To enable tracking of user agent-related information for mobile native applications, the Tealeaf client
frameworks submit the HTTP_X_TEALEAF header, which is rendered into these request variables:

Logging Framework Example submitted header

Android Logging

HTTP_X_TEALEAF=device (android)
Lib/0.0.10

iOS Logging Framework
HTTP_X_TEALEAF=device (i0S) Lib/8.5.4.1

HTTP_X_TEALEAF_PROPERTY header and mobile native applications

The Tealeaf client frameworks also submit the HTTP_X_TEALEAF_PROPERTY header, which contains
user agent information that is extracted from the device itself.

The Tealeaf Reference session agent then uses the properties included in the above header to write out
available values in the [ExtendedUserAgent] section, in the request variables that are used by other
Tealeaf components to extract user agent information. In this manner, information that provided directly
by the Tealeaf client frameworks is used to populate user agent information throughout Tealeaf without
requiring a lookup or other reference data.

Searching for client framework sessions

The JSON messages that are submitted from the client frameworks for capture are automatically indexed
for search. Each JSON POST is converted to XML and indexed as a Request/Request body field.

Example of raw JSON

this is an example of a ras JSON message POST:

i"serialNumber":0, "messageVersion":"0.0.0.3","sessions":[{"startTime":133518041
5973, "id":"C6A2913845DA422381FC9678856F6000" , "messages" : [{"context":{"type":"LO
AD", "name": "HomeActivity_1335180416289"%, "offset":318,"type":2, "contextOffset":
0%,1"offset":369, "type":1, "contextOffset":50, "mobileState":{"orientation":0,"fr
eeStorage":32235520, "androidState" : { "keyboardState" : "HIDDEN_FALSE"%, "battery":5
0, "freeMemory":164397056, "connectionType":"UMTS", "carrier":"Android", "networkRe
achability":"ReachableViaWWAN", "ip":"0.0.0.0"%},{"offset":1357,"type":1, "contex
t0ffset":1037, "mobileState":{"orientation":0, "freeStorage":32235520, "androidSta
te":{"keyboardState":"HIDDEN_FALSE"%}, "battery":50, "freeMemory" :163835904, "conne
ctionType":"UMTS", "carrier":"Android", "networkReachability":"ReachableViaWWAN",
"ip":"0.0.0.0"%%,$"customEvent":{"name" : "Screenshot Taken for file:
android.widget.LinearLayout_1335180417333.png"}, "offset":2651, "type":5, "context
Offset":2332%]%],"clientEnvironment":{"mobileEnvironment":{"android":{"keyboard
Type" :"QWERTY", "brand":"generic", "fingerPrint":"generic
\/sdk\/generic:2.3.3\/GR

I34\/101070:eng\/test-keys"%, "totalMemory":164151296, "totalStorage":12288, "orie
ntationType":"PORTRAIT", "appVersion":"1.0.6", "manufacturer":"unknown", "userId":
"android-build","locale":"English (United

States)", "deviceModel":"sdk", "language":"English"%, "width":480, "height":800, "os
Version":"2.3.3"%%

Example of indexed text

This is an example of the JSON message confverted to XML and indexed:

<RequestBody>
<clientEnvironment>
<height>800</height>
<mobileEnvironment>
<android>

28 Client Framework Data Integration Guide

<brand>generic</brand>
<fingerPrint>generic/sdk/generic:
2.3.3/GRI34/101070:eng/test-
keys</fingerPrint>
<keyboardType>QWERTY</keyboardType>
</android>
<appVersion>1.0.6</appVersion>
<deviceModel>sdk</deviceModel>
<language>English</language>
<locale>English (United States)</locale>
<manufacturer>unknown</manufacturer>
<orientationType>PORTRAIT</orientationType>
<totalMemory>164151296</totalMemory>
<totalStorage>12288</totalStorage>
<userId>android-build</userId>
</mobileEnvironment>
<osVersion>2.3.3</osVersion>
<width>480</width>
</clientEnvironment>
<messageVersion>0.0.0.3</messageVersion>
<serialNumber>0</serialNumber>
<sessions>
<id>C6A2913845DA422381FC9678856F6000</id>
<messages>
<context>
<name>HomeActivity_1335180416289</name>
<type>L0OAD</type>
</context>
<contextOffset>0</contextOffset>
<offset>318</offset>
<type>2</type>
</messages>
<messages>
<contextOffset>50</contextOffset>
<mobileState>
<androidState>
<keyboardState>HIDDEN_FALSE</keyboardState>
</androidState>
<battery>50</battery>
<carrier>Android</carrier>
<connectionType>UMTS</connectionType>
<freeMemory>164397056</freeMemory>
<freeStorage>32235520</freeStorage>
<ip>0.0.0.0</ip>
<networkReachability>ReachableViaWWAN</networkReachability>
<orientation>0</orientation>
</mobileState>
<offset>369</offset>
<type>1</type>
</messages>
<messages>
<contextOffset>1037</contextOffset>
<mobileState>
<androidState>
<keyboardState>HIDDEN_FALSE</keyboardState>
</androidState>
<battery>50</battery>
<carrier>Android</carrier>
<connectionType>UMTS</connectionType>
<freeMemory>163835904</freeMemory>
<freeStorage>32235520</freeStorage>
<ip>0.0.0.0</ip>
<networkReachability>ReachableViaWWAN</networkReachability>
<orientation>0</orientation>
</mobileState>
<offset>1357</offset>
<type>1</type>
</messages>
<messages>
<contextOffset>2332</contextOffset>
<customEvent>
<name>Screenshot Taken for file:
android.widget.LinearlLayout_1335180417333.png</name>
</customEvent>
<offset>2651</offset>
<type>5</type>
</messages>
<startTime>1.33518e+012</startTime>
</sessions>
</RequestBody>

IBM Tealeaf CX Client Framework Data Integration Guide 29

Searching session using text

Use this task as an example of how to search sessions using text.

About this task

Through the Portal, you can use the following methods to search for these types of information:

Table 6. Searching Using Text

Type Example Method of Search
Value of ReachableviaWWAN Values are searchable using the Text in
JSON Request field. See "Searching Session
property Data" in the IBM Tealeaf cxImpact User
Manual.
Name of networkReachability Use the form field search criterion to
JSON specify the name of a JISON property for
property which you would like to search. See
"Searching Session Data" in the IBM
Tealeaf cxImpact User Manual.
Procedure

Searching sessions using events

In the steps below, you search for an event + dimension value combination. In this case, you can use the
Hit Count event and one of the following dimensions. Since this event is already associated with these
dimensions and is present in all completed sessions, no further configuration is required.

Table 7. Searching Using Events

Type of [Dimension Dimension